The Hecke category ! e BURN
(part I[factorizable structure)

Ryan Reich 16
February 2010

In this lecture and the next, we will describe the \Hecke category”, namely, the thing which acts on
D-modules on Buncand with respect to which action the notion of Hecke eigensheaves is de ned. In fact,
almost none of this content actually concerns Bung, so before we move into talking about something
apparently completely di erent, we will give a general description of the goal and indicate why the context
must change. Throughout this lecture, our D-modules are assumed to be holonomic.

The Hecke stack; motivation

Back in the very rst lecture, Dennis described some particular examples of Hecke functors for Bun=
BuncLa(X) (as always, Xis the smooth projective curve we are using). They all concerned diagrams
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v
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Tis a G-torsor on the formal disk SpecR[[z]] = Dt:
TolTis a trivialization of Ton DsnfOgss=D s

) (1)
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notation, then, Grby choosing a uniformizing parameter znear x; when this happens, we will  For any group G, not just GLn
just write b Kande

IT  is anisomorphism on X2 nfxgs
T are G-torsors on Xs ):
lf'SsS =((TyT2;) T2 i s
hEre | ain
disgram- "
Bunhc x Hhxi!Bune
G G 1 lon X), the berof hover |, restrictedtoD

TonD,thenT
. 1

For any point of Bun(C ) (that is, a G-torsor T. Indeed, if we 2

(noncanonically) pick a trivialization of T

he F=If Oxinduce a global strati cation of ) Grc 1 i isactuallyaGrec Ssn 2
H [ -bundle over Bune
G
. ) acting on Gr yMe F):
Gr
G
Fx(M)=('h
Xn= Hn
X
Here, x

and the berof h

is
noncanonically identi ed with Gr, can vary over all possible G-torsors and over
all trivializations, since Tis now trivial (this is the Beauville{Laszlo theorem, which
says that we can always glue on Taway from xto complete T). It is not hard to
show (using this same logic) that H, where the structure group is in fact G(); we
will return to this more precisely next time. Therefore, the G( b O)-orbits on Gry; it
turns out that their various closures are exactly the strange Hecke stacks
considered before.
Recall the de nition of equivariance of a D-module with respect to the action of
a group on the underlying space; in the case of G(b Oxg, it means that the two
pullbacksG( b Oxc aprare isomorphic, with the isomorphism subject to some
natural conditions. Any such D-module Fcan be extended along Hxx) to a



\twisted pullback" e F; for M2D-mod(Bun), set MM e F Hxthis is the uniform
de nition of the Hecke functors. We see, therefore, that the Hecke category of
Hecke functors is simply the category D-moda (b 0x(Grc) or, as we will call it
later, Sph. One further modi cation is possible. If x2X(C ) is not xed but
allowed to vary, or to multiply toseveral points, then there arise relative and
higher Hecke stacks Hde ned by

IT2 is anisomorphism on X X )
Hn(S) = (~x:T1:T2;) : T1 ~X2Xn(S);T iare G-torsors on X ):
i) is the graph of xi : SIXinside Xs. There are
diagrams
n BunnhG » Hhn i!Bun Xn

is something we have not seen yet but which we will
introduce presently: the \factorizable" grassmannian.

The factorizable grassmannian

(S)=( : for a xed choice of x2X(C ), we have: ?T't)
Recall the 2
\global" version
of Gr
Gre Tis a G-torsor on Xstis a nfxg

trivialization of Ton Xs

111
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Gre:x (S) = Grn(S) = Tis a G-torsor on Xs X
(=xT:t)
n tis a trivialization of Ton Xs n[ i)
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Py
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X

m

n. Then there are isomorphisms Grn
iwhich are compatible with re nement of the partition
p; Let pbe a partition as above and suppose its parts
For n;m2N , let pbe a partition of [1;n] into mparts and inside X
j =Grm

p

have sizes ni; let U

.. . G
consisting of coordinates (x " v

Grn
p
, then i;jare in the same part of p. Then there are isomorphisms

P be the open subset of Xn

jUp Ycompatible with re nement of
=U’s). Furthermore, these isomorg
some diagonal, and away from o

on
Xn
which is compatible with both of the above classes of ison
For any n, an equivariance structure for the action of the symmetric It is possible to give a precise statement of the nature of these ¢
group S little reward for the necessary work, it is in the appendix. The pr
= = Xn1
n nm+1
J
i j2pand Vi Iare the same in both cases, so ijp m i
sGrn the complement of all the D;
S
i
S
i by gluing Tj ito the trivial torsor T ojvi via tj along the isomorphism ton Uj); 2pi;Ti;ti Wi =X i
i | 2
i
gof Xs
i
n
G
We construct the factorization maps along the diagonals. If we have coordinates x , ..., Xx= = xn, then we may set xi= yifor all j2pi, where
ThenSx;) = Siyi); since Xsis the same in both cases, th
again single out a partition, but this time, none of the n
are disjoint, for i= 1;:::;n; denote by U
=S i=X nDi. n(~x; a toi
other than D v Then U 9) 3
on Xs v
i n
Just like Gr i ]
' 3
T
n i
n n
n
(S) =
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ori

G(b (~x;9) ~x2X  ~x2Xn(S);02G xi) ©
0)G( (b X(S);02G sxb X) osxn [



where Then Grn = G( b K)n=G( b Xs;x= Specxs), b( b Oxs, and thus both groups act on Gr;pn):i; this follows, as for the a ne grassmanni:

bXs:x O)n from the Beauville{Laszlo theorem. This is so similar to Grthat one is entitled to ask what the relation
is, and the answer is simply that Griis a Gree-bundle over X, where the structure group is the group .
b O).xIndeed, if we choose on some Zariski-open subset Uof Xa regular function zwhich is a local
parameter at every point, then zidenti es each Owith b O= C [[z]] and thus identi es G(and G( b O) U
thus their quotient with Greb O)iand G( b K)iawith G( b K) U U. The transition maps are obviously gi\
by elements of Aut(sometimes, a small complex disk (in the analytic topology), then Gr1 = Grb O). T
a useful conceptual notion, but its most practical form is that if Xis, as we will take it X. The relative Ic
and arc groups G(b O)nand G( b K)ncare factorizable in the same way as Grn(as made precise in the
appendix).

m

Convolution and the geometric Satake equivalence

Now we introduce the main object of study: the Hecke category. De nition 1. The n’'th big Hecke category,

denoted Sphn, is the category of spherical, or G( b O)n-equivariant D-modules on Grn; the regular Hecke

category Sph is the category of G( b O)-equivariant D-modules on Gr. We will generally talk just about

Sphicand Sph, and in the end we will state (without proof) the appropriate generalizations to Sphn. The

most important property of these categories is that they have convolution products, which are obtained by

certain convolution diagrams. The most natural way of de ning convolution is to do it on G(b K) (or,

indeed, G(b K)n), via the multiplication map

G(b b
K) G( K)
A =m(A B
These maps in fact express Conv 1 2=zpr? ek f(g)g(hl §:
e PR E
=m
4
G
1,F2
2
F (
(F1 q



1 b K) G (F1) g (F2 G ! 1;F2
1Gre . G n G G
2SphisF1 con ( ! r
VG . G
r
G

~ 0

F of D-modules on G( b K), the formula B) is the geometric analogue of convolution of functic
Unfortunately, this de nition is not amenable to analysis since G(b K) is so wild. But suppos
For any complexes A ;B sheaves F2Sph, and denote g: G(; then ) can be computed on a much better space. Inde
gcommutative) and thus(3), along with the objects on it, descends to the diagram:are G( b (
both the left and the right (which are di erent since Gis not, in general,= G( b K) Gr: (4) Co
\convolution diagram". There is one projection pr: Conv; it and mare de ned by the formulas
de nitions(2)and(1)):

as the product Grpr(g;(T;t)) = gmod G( b O) m(g;(T;t)) = (T;g t): Gr, but we will not want this
Rather, for F2Sph, we de nee Fto be the descent of prF) from the left-hand side of(3)to Cor
F2Sph, Fe F1: (5) Then the convolution of F

): (6)



Note that, a priori, this is merely a complex of D-modules and, indeed, makes sense for any equivariant to a map from the convolution di
complexes in the derived category. Later, we will show that it indeed sends Sph Sph to Sph.The program

established above is easily generalized to Griand to the Grin general. Using the same words, the product

on G(b K)n, G(b K)n xnmn G( b K)!G( b K)nn(3) descends to the double quotient by actions of G(

b O)ﬂn nm
O

)
and admits, as before, one projection pr: Convn !Grn
2 e Fon Convn, and we (F e n 0

L set12 F
L

0,6

1 G(b G(b Gr IGr (4
0)
K)n
The left-hand side is denoted . When n= 1, this map is naturally identi ed with that of(4)over every point of X. For F2Sph(or indeed, a
Convn equivariant complex), there is a twisted pullback
) As for(6), these are merely complexes of D-modules for now; we will return later to the question of how
these convolutions are related to that of(6). Returning to the ordinary grassmannian Gr ¢

G) as tensor categories, where
Once the equivalence Sph = Rep(
: are factorizable, the categories Sphn

ép ISphn
n
hm
e Fz(r F1 e )[n]F F =m 1 2): (5
Just as the Gr F

, the theorem which is the
subject of these lectures is the geometric Satake equivalence:

Theorem 2. The convolution admits a commutativity constraint making Sph into a rigid tensor (\Tannakian") category. There
exists a faithful, exact tensor functor Sph !Vect inducing an equivalence (modulo a sign in the commutativity constraint) of
Sph with Rep(Gis the Langlands dual group of the reductive group G, whose weights are the coweights of Gand vice versa.
G) is established as categories, the convolution becomes less important, and is replaced by another form of factorizability
related to convolution on the Sph. We will digress from the proof in order to formulate a generalization of the above
theorem.

on them have a factorizable structure as well. Imprecisely, this
structure consists of the following data:
For any partition pof [1;n] into mparts, there is a direct image functor

along p with Grm
of D-modules on U

P
Sph: Here the rst map is restriction from Xnn:



(
1 U
3 3
)
L
e
t
q
b
e
t
h
e
c
0
m
p
|
e
t
e
corresponding to the identi cation of the restriction of Gr . This functor is right-exact and in fact has a right adjoint +n2in the derived cat
simplicity) that pis the partition n= nand that Uis the corresponding open set. O
category Sphpwhich are equivariant with respect to the action of (G(b O)n: G( b
Sphn!Sphpp Sphm
n to Up. For Fi P2Sph onFj °
5 [
1 3

convolution in Sphn. The factorizable
structure of the Sphn
L

m
, their image under the second map is (F F2)jup. As

before, these maps admit right adjoints and, when n= 2, are actually exact. There is a version of the above point for ner

partitions, and both of these maps are compatible with
corresponds to a factorizable notion of G-representation. To separate the notion fromG, let Hbe any group. If F2D-mod(X),
then we say that Hacts factorizably on Fif for every partition pof ninto mparts, there is an action of H, and these actions are
consistent with re nement of p. This consistency is exempli ed by the following situation: let n= 3, and say that pis the
partition 3 = 2 + 1 (in that order); then U= X



nis the complement of all the diagonals. On Ug, H
q, the rst factor of Hz

3
n

partition 3=1+ 1+ 1, so that Uq
p, H2

The fusion pro duct n(
G

0 Grg)is in fact a generalization of that(6)on Gr = Grec
1

The convolution

product(6
=j(Gn F1 F2 Gri) by factorization. Then= jij(Fo1 Fo
2)[1] 1]
Lemma4. Let Fi
P
2
1
bX

2

sw(Fo1
where sw: X2

2
acts on F, and on Uacts on F; we require that restricted to Uact as the diagonal of the rst

two factors of H, while the last factors act identically. We will denote by Rep(H) the category
of such factorizable representations of Hin D-mod(X). The categories Rep(H) have the same
factorizable structure as the Sph: a direct image along diagonals, and restriction and product
maps away from the diagonals. Finally, we can state the big Satake equivalence:

Theorem 3. There are equivalences of categories identifying all the Sph  withthe Rep t
G);



this equivalence respects their factorizable structures as well as convolution.

We will only proveTheorem 2;Theorem 3follows in a totally formal manner from it.

, at least as long as the objects being convolved are D-modules rather than complexes. The

connection is via a local computation on X: suppose that Xis a small complex disk with

center denoted X, so that Gr= pr X. For F2Sph, let FF[1]

be its extension, along this product, to Gr . (It should be noted that the product decomposition of Gr
1 n X2

TS ST !N

1

s canonical only up to the action of Aut(b O). However, it can be shown, in a manner not
depending on thefusion product, that any element of Sph has a unique structure of Aut( b
O)-equivariance, so that in fact thisdoes not interfere with the arguments.) In this section, we
will show that convolution on Sph has values again in Sph and that it has a natural
commutativity constraint. The key is the following claim, which establishes convolution in
Sph as a fusion product, so called because convolution at a point x2X is obtained via tensor
product over two points y;z2Xwhich come together (or \fuse") at x.

G their extensions as above to Gr. Letj: X2
r is that if : XIX :
F 101 2pr o2)=pr Olpr Ol =pr 1°¥)r ‘1)=F F
F2 1 2 b
X x ™
2
0
S;x
2
6

be
the inclusion, and identify |
Note that this product depends only on the factorization structure of Gr. One of the properties
of jiis the inclusion of the diagonal, then (M)[1] is a D-module for any D-module M(rather
than, as itis a priori, a complex on X). This immediately implies that Fis a D-module. It also
gives a commutativity constraint for , coming from the isomorphism



F )=sw(pr F F F F F F (2) ‘1)
2 2 1 1 2
swaps the coordinates and, of course, sw = , so the above
isomorphism indeed gives an isomorphism of Fwith F F1.Lemma 4shows why it is necessary to
work in the abelian category Sph, rather than the derived category in which the de nitions of
convolution also make sense: the operation jis only a functor on D-modules. Thus, we need
only proveLemma 4. In order to set up the core theoretical argument, we introduce the
convolution grassmannian f Gr. Once again, we give a quick (though correct) de nition here
and defer a technical development to the appendix. Recalling(4), let f Grbe the closed
subscheme of pairs ((~x;9);(~x;T;t)) in Convwith the following properties: As an element of
Gn(x) [x)) , gextends tos;x);



The trivialization t, de ned on b n(x1) [x2)), extends to Xs nx2 with Gr1 2
Xs 2

Nvo

Xin Gr2. Using them, we construct a twisted product F1 1

1
0i= pr enin the following way: Let F

i[1]on Gr1 Xand X Gr respectively, considered as objects of ;
Sph
f Groj F = Convi. Furthermore, the map o)induces a map, likewise called m, fromf  to Gr
mof(4,!Gr2 Gr 1

). Both of these conditions are invariant under multiplication by G(2, so do in fact de ne a subfunctor. It is

evident from this de nition that over Xn , there is a natural identi cation of f Gr, and that. There is a \cheap"

inclusion X Gr, sending a pair (x;(y;T;t)) to ((x;y);T;t); likewise, there is an inclusion of Gr

The tensor product (q  -biequivariant and so descends to Conv2; The descended D-module Fie Fz2ihappens to live or
De nition 5. The outer convolution of F;F22Sphiis F12 oF2=m (F11e F). Clearly, F Fo=  (F1 oF22)|
proveLemma 4, it su ces to prove (going back to Fo12Sph) F oo 2F=jij(Fo1 Fo2i): (7) To do this, \
introduce a catalyst in the form of the unipotent nearby and vanishing cycles functors; rather

than giving a detailed discussion of them, we refer the reader to the notes [2] on Beilinson’s paper [1]. Here,

only the following properties are important (once again, the D-modules are holonomic):

r Cartie m en fun nipoten
gueﬁ’a@zﬁ%%%ﬁiea?&%omo% s S el AR S b
Letj: U'Y be the inclusion. Suppose that F2D-mod(Y) and that unb(j =ji (j F) has trivial monodromy;
then a necessary and su cient condition that FF) is that un b y-module, then it has both of these
properties. When this happens, then i (F) = 0. If Fis a free OF[1] = ilF[1] = unb(F), where iis the inclusion

of D. (This is the only one of these facts that relies on the theory from Beilinson’s paper.)
is local on Din that for any open set V and F2D-mod(U), we have unb(F)jvunD = un

. p(Fjv
un 2D-mod(Y), Fr G), Foi2D-mod(F). Then we have une(Fy Fr ) = wo(Fy) Fr =
01
Y 1
1;F2 un E = unD

1
1

unD ), and this isomorphism respects the monodromy. This is likewise true for 1vand

F2D-mod(Y). Nearby and vanishing cycles respect products, as follows: let Z=Y F, set E= pr(D), and
let Fand likewise for , and this isomorphism respects the monodromy. If p: Z!Y is a proper morphism
and E= p(D), then p p(nearby cycles commute with proper direct image) and this isomorphism
respects the monodromy. Likewise, vanishing cycles commute with proper direct image.

The glue that makes this all stick together is the following easy lemma: Lemma 6. . Then F g

Let F2D-mod(Gr2D-mod(Gr) their extension to Gr

0 =Gre =pr(F1 F2)[2]

7

1
1

Foz2
has no vanishing cycles and its nearby cycles have trivial monodromy.
Proof. We continue to identify Gr1 X, and we write pr to mean (in this proof) the projection Gr Gr1!(Grg)2. Then we have F



in the statement that the cycles functors respect products, and let Fy

F (I
1 0 01 G =Gr Gr )thatf
02 1 S Gr
un
01
Take Y = X2, D= , and F=Gr2 2with the trivial D-module structure. Then it has no vanishing cycles or nearby-cycles i
be Ox the same is true of the tensor product (which, to be precise, we take to be F). The proo
chaining together the above properties. It turns out (one can argue directly,
or see the appendix; either way, this is analogous to the fact that Conv G G
01(Fo1 ° F Gri1. Thus,Lemma 6applies, so ) is trivial. v e Fo away from
Since mis a proper map, m " 2
02
(
F
°oF (F 02) =j(F F ) by the factorizability of f Gr
is locally

isomorphic to Gr) = 0 and the monodromy action on e Fo2preserves these properties, so the same is true
of F, and the criterion for it to equal the minimal extension of its own restriction applies. To complete the proof,
we note that j

App endix: the convolution grassmannian

In this appendix, we discuss the convolution grassmannian more formally. There are in fact many variations,

but we only need one:

f (9= X2, T T 1) isanisomorphism T =T2on Xsnx nx on Xstis a trivialization of T1 2;t;) 2
Gr

The reason for its existence is that it admits the diagram(4 o)

Xi 2X(S);Ti are G-torsors on X 9

< T
>: 2 ”
(x
Gripr 2m IGr
2, though: just set
resembles a product of Grz 2 fGr 1 2) T ; b):
2),

2

Clearly, f lwith itself, but that product does not admit a map such as m. The existence of |

Gr de nition off Gr
mxux T 5T 56)=((x X 2
Likewise, pr sends such a point to (x1;T1;t). Just like the Grn, f Grzis ind-proper, hence mis a proper map.



Although it is not actually the product Gri1 Grz, the projection map pr is in fact a Gr-bundle over Gr1. To see
this, we de ne the following functor:1

n -

< n oo

o

@ @

~ Q)

1 vw/\ppﬁo

—~®

-l—\></\|—\vo



(x1;T;t1) 2Gr(S) teuis a trivialization of Ton b X
1 ;3 . Therestriction of tz  tob  ? nx

T 3 o; let T2 X

), and so
2
2
away from x
(x1;x2;T;t1;t2) 2 e G(b O)(note the equality of X-coordinates); let o;t3) 2Gr1(S)
T11(S) (x= Tand t= t12;Tis a trivialization of Tthe restriction of Toto b Six
Xsix.along t t1 2has an isomorphism  with T12
(xyx2 1Tt ) 2fGr (S):
8

) is a trivialization of T, and the like restriction of tbe the G-torsor obtained by gluing to T, using the
Beauville{Laszlo theorem. Then by de nition, T



21This gives the map(8). To see that it is surjective, take a point such as the one above and Iétbe T2 i
T) [x2), thus obtaining a trivialization t3;To;t3) 2Gr1(S). As before, we take T= T1ib

Xs:x22(arbitrarily) on each set Uof this cover and take ti=t; then (x1;x2;T;t1;t2

this we have already identi ed each ber with G( b X), as desired. Let be the projection onto

Griuxefrom the left-hand side of(8). If F2Sphi, then e Fonf Grz; as before, for

F1;F22Sphiie  Fz= prFi e F2.ApPp endix: factorizable structure

In this appendix, we give a rigorous description of the factorizable structure on the Grn
111 131 andpz:l2 1J2  totheirunionp:l1 [l2 1J1 = pa(j) for the j'th part of this partition. We de ne two |

p!J, a rstre nementis a partition ri: I'losuch that p=

j a partition r2: Joo rlJsuch that p= r120 po
[J2

away from xglued, via t, to the trivial torsor away from x) and a point (X, but it is not necessarily possible to

trivialize it on. However, since Tis a torsor, there is an open cover of Son which such trivializations exist, and

we pick one t) 2 e G( b O)1(U). Thus,(8)is surjective as a map of Zariski sheaves (let alone fppf sheaves).

Finally, in the course of showing

(F) is G( b O)equivariant and therefore descends to a D-module, we de ne the twisted product F

. This requires some
abstract nonsense with partitions of nite sets; thus, we introduce the additional notation: for any nite sets
land J(thought of as \index sets"), a partition of linto Jparts is a surjection p: I'J. We will write p

. Note the directions of
the maps. Let Part be the category of partitions whose morphisms are generated
by the re nements of both types. There is a natural bifunctor Un: Part Part !Part sending a pair of partitions
p; this functor admits a natural commutativity constraint.

Let Xbe a scheme (it may as well be our curve). For anindex set |, let Xi = Qi
! i r. U to the coordinates (x i Dop ~Y=x o thenp(i ) =p(i
| ) ) such that if x 0
P
|
) 0,
p: Up
P
P
P
p . . e . . . . .
pr X3 IXi sending x I ji2p 1, with image L 1 2
0 ointo U
polU 1J
=in
) 1isa rstre nement, let| e
. =
is a second we have Ur2

re nement, let |
0)
Xbe the unordered power of Xcorresponding to this nite set. For any partition p: 1!, there is an induced
closed immersion i. There is also a corresponding open subset Uof X(not its complement) consisting of all



points (X); let jIXbe the open immersion. For any partition pand morphism r: p!pin Part, there is a locally
closed immersion Irpo, which clearly sends Ude ned as follows for the re nements: If r=rrp; If r=r, which
again clearly has image in U. One should check that for any p;poun(;pe Upo. Let PSch (\schemes over
partitions") be the category, bered over Part, such that for any partition p,

the ber PSch is Sch=Up, the category of schemes over Up

r
1=U "' and X =Up to (X1 X2)jUun(pz;p2) P
0

, and let the cartesian morphisms (pullbacks
along morphisms r) be given by restriction along |. There is again a bifunctor Pr: PSch PSch !PSch sending X,
admitting a natural commutativity constraint. If : PSch !Part is the structure functor, then identi es Pr with
Un. In more usual terms, the two categories are braided monoidal categories and is a braided monoidal
functor.
De nition 7. An sf-scheme (\symmetric factorizable scheme") is a braided monoidal section functor Fof .
This means:
9 F(p) with F(p
1.We have F=id exactly (not up to isomorphism); 2.For o, and these isomorphisms are functorial in r;
every morphism r: p!p, there is an isomorphism of r



3.There is the additional datum of an isomorphism of functors making the square commute:
prPSch PSch PSch =

unPart Part Part

~

4.This isomorphism is required to be compatible with the commutativity constraints in the sense
that if Sw is the functor swapping factors in either product category of the above diagram, then
the following diagram of functors and natural transformations commutes:

Pr Sw Pr

Un E{H}?
If for every index set I, having cardinality #I= n, we have F(l!f1g) = Gr., then Fis a factorizable
structure on Grng;x, and in the main text we have described ore such structure. The
correspondence between the above properties and the ones given before is:

The existence of factorization along diagonals (the rst factorization property) is a special
case of (2) when r=ripis a rst re nement and pis the trivial partition | !If1gwith only one part (so
Up= Xi). Factorization on diagonal complements (the second factorization property) is a
combination of (3) andthe special case of (2) with r= m2-equivariance is special case of (2) in
which pis the trivial partition and poa second re nement and pthe trivial partition. The S=p, so
that ris an automorphism of I.

Compatibility of the three structures above is the stipulation in (2) that the isomorphisms be
functorial, together with the functoriality of Pr and the fact that is a monoidal functor. The role
of (4) is to ensure that the data of Sn-equivariance on Gmis compatible with the natural
S-equivariance of a product Grn: Grnawhen both are identi ed on Up(here pis the partition n=

n2i+ n2).
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