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In this lecture and the next, we will describe the \Hecke category", namely, the thing which acts on 
D-modules on BunGand with respect to which action the notion of Hecke eigensheaves is de ned. In fact, 
almost none of this content actually concerns BunG, so before we move into talking about something 
apparently completely di erent, we will give a general description of the goal and indicate why the context 
must change. Throughout this lecture, our D-modules are assumed to be holonomic. 

The Hecke stack; motivation 

Back in the very  rst lecture, Dennis described some particular examples of Hecke functors for Bun= 
BunGLn(X) (as always, Xis the smooth projective curve we are using). They all concerned diagrams 
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notation, then, Grby choosing a uniformizing parameter znear x; when this happens, we will 
just write b KandG

For any group G, not just GLn = G( b 
K)=G(

b O): (2), we de ne the Hecke stack at x, where we simply let  be anything at all so long as it is an 
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noncanonically identi ed with Gr, can vary over all possible G-torsors and  over 
all trivializations, since Tis now trivial (this is the Beauville{Laszlo theorem, which 
says that we can always glue on Taway from xto complete T). It is not hard to 
show (using this same logic) that H, where the structure group is in fact G(); we 
will return to this more precisely next time. Therefore, the G( b O)-orbits on Grx; it 
turns out that their various closures are exactly the strange Hecke stacks 
considered before. 
Recall the de nition of equivariance of a D-module with respect to the action of 
a group on the underlying space; in the case of G(b OxG, it means that the two 
pullbacksG( b OxG aprare isomorphic, with the isomorphism subject to some 
natural conditions. Any such D-module Fcan be extended along Hxx) to a 
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\twisted pullback" e F; for M2D-mod(Bun), set MM e F Hxthis is the uniform 
de nition of the Hecke functors. We see, therefore, that the Hecke category of 
Hecke functors is simply the category D-modG ( b Ox)(GrG) or, as we will call it 
later, Sph. One further modi cation is possible. If x2X(C ) is not  xed but 
allowed to vary, or to multiply toseveral points, then there arise relative and 
higher Hecke stacks Hde ned by
!T2 is an isomorphism on X x )

Hn(S) = ((~x;T1;T2; )   : T1
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i
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is something we have not seen yet but which we will 
introduce presently: the \factorizable" grassmannian. 
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little reward for the necessary work, it is in the appendix. The proofs are simple:
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Then Grn = G( b K)n=G( b 
O)n

XS;x= SpecXS), b( b OXS, and thus both groups act on Gr;Dn):i; this follows, as for the a ne grassmannian, 
from the Beauville{Laszlo theorem. This is so similar to Grthat one is entitled to ask what the relationship 
is, and the answer is simply that Gr1is a GrGG-bundle over X, where the structure group is the group Aut( 
b O).xIndeed, if we choose on some Zariski-open subset Uof Xa regular function zwhich is a local 
parameter at every point, then zidenti es each Owith b O= C [[z]] and thus identi es G(and G( b O) U, and 
thus their quotient with GrGb O)1and G( b K)1with G( b K)  U U. The transition maps are obviously given 
by elements of Aut(sometimes, a small complex disk (in the analytic topology), then Gr1  = Grb O). This is 
a useful conceptual notion, but its most practical form is that if Xis, as we will take it X. The relative loop 
and arc groups G(b O)nand G( b K)nGare factorizable in the same way as Grn(as made precise in the 
appendix).

x refers to the schemy formal neighborhood of D= S

Convolution and the geometric Satake equivalence 
Now we introduce the main object of study: the Hecke category. De nition 1. The n’th big Hecke category, 
denoted Sphn, is the category of spherical, or G( b O)n-equivariant D-modules on Grn; the regular Hecke 
category Sph is the category of G( b O)-equivariant D-modules on Gr. We will generally talk just about 
Sph1Gand Sph, and in the end we will state (without proof) the appropriate generalizations to Sphn. The 
most important property of these categories is that they have convolution products, which are obtained by 
certain convolution diagrams. The most natural way of de ning convolution is to do it on G(b K) (or, 
indeed, G(b K)n), via the multiplication map
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 F of D-modules on G( b K), the formula B ) is the geometric analogue of convolution of functions, (f fg)dh. 
Unfortunately, this de nition is not amenable to analysis since G(b K) is so wild. But suppose that we have 
sheaves F2Sph, and denote q: G(; then q ) can be computed on a much better space. Indeed, the 
qcommutative) and thus(3), along with the objects on it, descends to the diagram:are G( b O)-equivariant on 
both the left and the right (which are di erent since Gis not, in general,= G( b K)  Gr: (4) ConvGis called the 
\convolution diagram". There is one projection pr: Conv; it and mare de ned by the formulas (referring to 
de nitions(2)and(1)): 

as the product Grpr(g;(T;t)) = gmod G( b O) m(g;(T;t)) = (T;g t): Gr, but we will not want this identi cation. 
Rather, for F2Sph, we de nee Fto be the descent of prF) from the left-hand side of(3)to Conv, and for 
F2Sph, Fe   F 1: (5) Then the convolution of F 
): (6)

!G( b K): (3)



Note that, a priori, this is merely a complex of D-modules and, indeed, makes sense for any equivariant 
complexes in the derived category. Later, we will show that it indeed sends Sph Sph to Sph.The program 
established above is easily generalized to Gr1and to the Grin general. Using the same words, the product 
on G(b K)n, G(b K)n Xn mn G( b K)!G( b K)nn(3) descends to the double quotient by actions of G(

to a map from the convolution diagram
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The left-hand side is denoted 
Convn

. When n= 1, this map is naturally identi ed with that of(4)over every point of X. For F2Sph(or indeed, any 
equivariant complex), there is a twisted pullback

) As for(6), these are merely complexes of D-modules for now; we will return later to the question of how
these convolutions are related to that of(6). Returning to the ordinary grassmannian Gr 
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, the theorem which is the 
subject of these lectures is the geometric Satake equivalence: 

Theorem 2. The convolution  admits a commutativity constraint making Sph into a rigid tensor (\Tannakian") category. There 
exists a faithful, exact tensor functor Sph !Vect inducing an equivalence (modulo a sign in the commutativity constraint) of 
Sph with Rep(Gis the Langlands dual group of the reductive group G, whose weights are the coweights of Gand vice versa. 
G) is established as categories, the convolution becomes less important, and is replaced by another form of factorizability 
related to convolution on the Sph. We will digress from the proof in order to formulate a generalization of the above 
theorem.
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corresponding to the identi cation of the restriction of Gr . This functor is right-exact and in fact has a right adjoint  +n2in the derived category.  Suppose (for 
simplicity) that pis the partition n= nand that Uis the corresponding open set. Over Uthere is a 
category Sphpwhich are equivariant with respect to the action of (G(b O)n1 G( b O)n2)jUp, and a diagram 
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, their image under the second map is (F  F2)jUp. As 
before, these maps admit right adjoints and, when n= 2, are actually exact.  There is a version of the above point for  ner 
partitions, and both of these maps are compatible with 

corresponds to a factorizable notion ofG-representation. To separate the notion fromG, let Hbe any group. If F2D-mod(X), 
then we say that Hacts factorizably on Fif for every partition pof ninto mparts, there is an action of H, and these actions are 
consistent with re nement of p. This consistency is exempli ed by the following situation: let n= 3, and say that pis the 
partition 3 = 2 + 1 (in that order); then U= X
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2)[1]       x[1]:

acts on F, and on Uacts on F; we require that restricted to Uact as the diagonal of the  rst 
two factors of H, while the last factors act identically. We will denote by Rep(H) the category 
of such factorizable representations of Hin D-mod(X). The categories Rep(H) have the same 
factorizable structure as the Sph: a direct image along diagonals, and restriction and product 
maps away from the diagonals. Finally, we can state the big Satake equivalence:
Theorem 3. There are equivalences of categories identifying all the Sph with the Rep L

G); 



this equivalence respects their factorizable structures as well as convolution. 
We will only proveTheorem 2;Theorem 3follows in a totally formal manner from it.
, at least as long as the objects being convolved are D-modules rather than complexes. The 
connection is via a local computation on X: suppose that Xis a small complex disk with 
center denoted x, so that Gr= pr X. For F2Sph, let FF[1]
be its extension, along this product, to Gr . (It should be noted that the product decomposition of Gr
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s canonical only up to the action of Aut(b O). However, it can be shown, in a manner not 
depending on thefusion product, that any element of Sph has a unique structure of Aut( b 
O)-equivariance, so that in fact thisdoes not interfere with the arguments.) In this section, we 
will show that convolution on Sph has values again in Sph and that it has a natural 
commutativity constraint. The key is the following claim, which establishes convolution in 
Sph as a fusion product, so called because convolution at a point x2X is obtained via tensor 
product over two points y;z2Xwhich come together (or \fuse") at x.
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Note that this product depends only on the factorization structure of Gr. One of the properties 
of j! is the inclusion of the diagonal, then  (M)[1] is a D-module for any D-module M(rather 
than, as it is a priori, a complex on X). This immediately implies that Fis a D-module. It also 
gives a commutativity constraint for  , coming from the isomorphism
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swaps the coordinates and, of course, sw   =  , so the above 
isomorphism indeed gives an isomorphism of Fwith F F1.Lemma 4shows why it is necessary to 
work in the abelian category Sph, rather than the derived category in which the de nitions of 
convolution also make sense: the operation jis only a functor on D-modules. Thus, we need 
only proveLemma 4. In order to set up the core theoretical argument, we introduce the 
convolution grassmannian f Gr. Once again, we give a quick (though correct) de nition here 
and defer a technical development to the appendix. Recalling(4), let f Grbe the closed 
subscheme of pairs ((~x;g);(~x;T;t)) in Convwith the following properties:  As an element of 
Gn(x) [x))   , gextends toS;x);



 The trivialization t, de ned on 
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b
 
O
)
2

n(x1) [x2)), extends to XS nx2 

2

with Gr1 2 Gr1 
2

 Xin Gr2. Using them, we construct a twisted product F1 

1

1 

1 

0 i= pr  Gr1in the following way:  Let F

e   F2for any Fi 
2

2Sph

i[1] on Gr1  Xand X Gr respectively, considered as objects of 
Sph

;

f Gr2j F  = Conv1. Furthermore, the map 
mof(4,!Gr2

0)induces a map, likewise called m, from f 
Gr

to Gr 
1

). Both of these conditions are invariant under multiplication by G(2, so do in fact de ne a subfunctor. It is 
evident from this de nition that over Xn , there is a natural identi cation of f Gr, and that. There is a \cheap" 
inclusion X Gr, sending a pair (x;(y;T;t)) to ((x;y);T;t); likewise, there is an inclusion of Gr
 The tensor product (q -biequivariant and so descends to Conv2;  The descended D-module F1e   F21happens to live on f Gr. 

De nition 5. The outer convolution of F;F22Sph1is F12 oF2= m (F11e   F). Clearly, F F2=   (F1 oF22)[1], so to 
proveLemma 4, it su ces to prove (going back to F0 12Sph) F o0 2F= j! j (F0 1  F0 2i): (7) To do this, we 
introduce a catalyst in the form of the unipotent nearby and vanishing cycles functors; rather

is G( b 
O)2

 X2 G( b K)20 2F)[2] on G( b 
K)2

  q 0 

1F

than giving a detailed discussion of them, we refer the reader to the notes [2] on Beilinson’s paper [1]. Here, 
only the following properties are important (once again, the D-modules are holonomic): 

 For any scheme Y and Cartier divisor D Y with open complement U, there is a functor of unipotent 
nearby cycles around D,  : D-mod(U) !D-mod(D), together with an endomorphism (unipotent on each  un 
Dun D(F)) called the monodromy. There is likewise a functor  un D: D-mod(Y) !D-mod(D) of unipotent 
vanishing cycles. 

 Let j: U!Y be the inclusion. Suppose that F2D-mod(Y) and that  un D(j  = j! (j F) has trivial monodromy; 
then a necessary and su cient condition that FF) is that  un D Y-module, then it has both of these 
properties. When this happens, then i (F) = 0. If Fis a free OF[1] = i!F[1] =  un D(F), where iis the inclusion 
of D. (This is the only one of these facts that relies on the theory from Beilinson’s paper.)
is local on Din that for any open set V and F2D-mod(U), we have  un D(F)jVun D   =  un 

D(FjV

Y

un 2D-mod(Y), FF 

1;F2

G), F0 i2D-mod(F). Then we have  un E(FY 
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1

  FF 

un E

)  =  un D(FY 

  =  un D 

1

)   FF 
0 1

  F

  un D ), and this isomorphism respects the monodromy. This is likewise true for  1 Yand 
F2D-mod(Y).  Nearby and vanishing cycles respect products, as follows: let Z= Y F, set E= pr(D), and 
let Fand likewise for  , and this isomorphism respects the monodromy.  If p: Z!Y is a proper morphism 
and E= p(D), then p   p(nearby cycles commute with proper direct image) and this isomorphism 
respects the monodromy. Likewise, vanishing cycles commute with proper direct image.

The glue that makes this all stick together is the following easy lemma: Lemma 6. 
Let F2D-mod(Gr2D-mod(Gr) their extension to Gr

. Then F 0 
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  = GrG 

  F0 2

= pr (F1 
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  F2)[2]:

has no vanishing cycles and its nearby cycles have trivial monodromy.
Proof. We continue to identify Gr1  X, and we write pr to mean (in this proof) the projection Gr Gr1!(GrG)2. Then we have F



in the statement that the cycles functors respect products, and let FY 
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) that f 
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Take Y = X2, D=  , and F= Gr2 
be OX

2 with the trivial D-module structure. Then it has no vanishing cycles or nearby-cycles monodromy; thus, 
the same is true of the tensor product (which, to be precise, we take to be F). The proof of(7)is now just 
chaining together the above properties. It turns out (one can argue directly,

or see the appendix; either way, this is analogous to the fact that Conv G G 2

0 1(F0 1 o F Gr1. Thus,Lemma 6applies, so  ) is trivial. 
Since mis a proper map, m 
0 2

u
n
 
 

(
F
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away from  .

o F  (F  0 2) = j (F   F ) by the factorizability of f Gr
is locally 

isomorphic to Gr) = 0 and the monodromy action on  e   F0 2preserves these properties, so the same is true 
of F, and the criterion for it to equal the minimal extension of its own restriction applies. To complete the proof, 
we note that j 

App endix: the convolution grassmannian 
In this appendix, we discuss the convolution grassmannian more formally. There are in fact many variations, 
but we only need one:
1f 
Gr

(S) = ;x2;T1;T 1)  is an isomorphism T  = T2on XSnx nx on XS tis a trivialization of T1 2;t; ) 2 )

The reason for its existence is that it admits the diagram(4 0)
:

8 
>< 
>: 
(x

 
 
 
 
 
 
 
 
 
 
 
 
 

xi 2X(S);Ti are G-torsors on X 

1 
2

9 
>= 
>; 
:

Gr1 pr 2 m !Gr :
2, though: just set
resembles a product of Gr12 2   f Gr 
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2);T

;  t):

Clearly, f 
Gr

1with itself, but that product does not admit a map such as m. The existence of mis evident from the 
de nition off Gr

m(x1;x ;T ;T ;t; ) = ((x ;x 2

Likewise, pr sends such a point to (x1;T1;t). Just like the Grn, f Gr2is ind-proper, hence mis a proper map. 



Although it is not actually the product Gr1 Gr1, the projection map pr is in fact a Gr-bundle over Gr1. To see 
this, we de ne the following functor:1

e
 
G
(
b
 
O
)
I
t
 
i
s
 
e
a
s
y
 
t
o
 
s
e
e
 
t
h
a
t
 
G
r
1
1

(
S
)
 
=
 
(
 
G
(
 
b
 
O
)
1

(
x
1

;

x2;T;t1;ta
cts, over 
Gr21)    
     

S
;
x
2

)
 
: 

 X, on this by altering t2, and 
that this action is a torsor. 
The claim is thatf Gr2is the 
bundle associated to this 
torsor with  ber Gr. This 
means that there is a map: 
eG( b O)1To construct it, 
suppose we have a pair of 
points XGr1! f Gr21: (8)
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(x1;x2;T;t1;t2) 2 e G(b O)(note the equality of X-coordinates); let 
T11(S) (x= Tand t= t12;Tis a trivialization of Tthe restriction of T0to b 
XS;x2along t t1 2has an isomorphism  with T12

0;t3) 2Gr1(S) 
S;x
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(S):

) is a trivialization of T, and the like restriction of tbe the G-torsor obtained by gluing to T, using the 
Beauville{Laszlo theorem. Then by de nition, T



21This gives the map(8). To see that it is surjective, take a point such as the one above and let 
T) [x2), thus obtaining a trivialization t3;T0;t3) 2Gr1(S). As before, we take T= T1b 
XS;x22(arbitrarily) on each set Uof this cover and take t1= t; then (x1;x2;T;t1;t2 
this we have already identi ed each  ber with G( b X), as desired. Let  be the projection onto 
Gr1U;x2from the left-hand side of(8). If F2Sph1, then   e Fonf Gr2; as before, for 

F1;F22Sph11e   F2= pr F1 e F2.App endix: factorizable structure 

In this appendix, we give a rigorous description of the factorizable structure on the Grn

0 be T2 2 
1

j

1: I1 !J1 and p2: I2 !J2 to their union p: I1 [I2 !J1 = p1(j) for the j’th part of this partition. We de ne two kinds of re nements r: p0: I0!p:  For 
p!J, a  rst re nement is a partition r1: I!I0such that p= p0;  For p: I!J0, a second re nement is 
a partition r2: J00 r!Jsuch that p= r120 p0 
[J2

away from xglued, via   t, to the trivial torsor away from x) and a point (x, but it is not necessarily possible to 
trivialize it on. However, since Tis a torsor, there is an open cover of Son which such trivializations exist, and 
we pick one t) 2 e G( b O)1(U). Thus,(8)is surjective as a map of Zariski sheaves (let alone fppf sheaves). 
Finally, in the course of showing 
(F) is G( b O)equivariant and therefore descends to a D-module, we de ne the twisted product F 

. This requires some 
abstract nonsense with partitions of  nite sets; thus, we introduce the additional notation: for any  nite sets 
Iand J(thought of as \index sets"), a partition of Iinto Jparts is a surjection p: I!J. We will write p 

. Note the directions of 
the maps. Let Part be the category of partitions whose morphisms are generated 
by the re nements of both types. There is a natural bifunctor Un: Part Part !Part sending a pair of partitions 
p; this functor admits a natural commutativity constraint.
Let Xbe a scheme (it may as well be our curve). For an index set I, let XI = Qi 2I

p 
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is a second 
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= ir1 
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ji2p 
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0)
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0

), with image   

!J

i 
0 into U

i 1 2

Xbe the unordered power of Xcorresponding to this  nite set. For any partition p: I!J, there is an induced 
closed immersion i. There is also a corresponding open subset Uof X(not its complement) consisting of all 



points (x); let j!Xbe the open immersion. For any partition pand morphism r: p!pin Part, there is a locally 
closed immersion lrp0 , which clearly sends Ude ned as follows for the re nements:  If r= rrp;  If r= r, which 
again clearly has image in U. One should check that for any p;p0Un(p;pp Up0 . Let PSch (\schemes over 
partitions") be the category,  bered over Part, such that for any partition p,
the  ber PSch is Sch=Up, the category of schemes over Up 

r

1=U
1

and X =Up2 to (X1 
0

 X2)jUUn(p1;p2) p

, and let the cartesian morphisms (pullbacks 
along morphisms r) be given by restriction along l. There is again a bifunctor Pr: PSch PSch !PSch sending X, 
admitting a natural commutativity constraint. If  : PSch !Part is the structure functor, then  identi es Pr with 
Un. In more usual terms, the two categories are braided monoidal categories and  is a braided monoidal 
functor. 
De nition 7. An sf-scheme (\symmetric factorizable scheme") is a braided monoidal section functor Fof  . 
This means:
9 F(p) with F(p
1.We have   F= id exactly (not up to isomorphism); 2.For 
every morphism r: p!p, there is an isomorphism of r

0 , and these isomorphisms are functorial in r; 0) as schemes over 
U
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3.There is the additional datum of an isomorphism of functors making the square commute: 
PrPSch PSch PSch

UnPart Part Part 

4.This isomorphism is required to be compatible with the commutativity constraints in the sense 
that if Sw is the functor swapping factors in either product category of the above diagram, then 
the following diagram of functors and natural transformations commutes: 

Pr Sw Pr 

Un Sw Un 

If for every index set I, having cardinality #I= n, we have F(I!f1g) = Grn , then Fis a factorizable 
structure on GrnG;X, and in the main text we have described one such structure. The 
correspondence between the above properties and the ones given before is: 

 The existence of factorization along diagonals  (the  rst factorization property) is a special 
case of (2) when r= r1pis a  rst re nement and pis the trivial partition I !f1gwith only one part (so 
Up= XI).  Factorization on diagonal complements (the second factorization property) is a 
combination of (3) andthe special case of (2) with r= rn2-equivariance is special case of (2) in 
which pis the trivial partition and p0a second re nement and pthe trivial partition.  The S= p, so 
that ris an automorphism of I. 

 Compatibility of the three structures above is the stipulation in (2) that the isomorphisms be 
functorial, together with the functoriality of Pr and the fact that  is a monoidal functor. The role 
of (4) is to ensure that the data of Sn-equivariance on Grnis compatible with the natural 
S-equivariance of a product Grn1 Grn2when both are identi ed on Up(here pis the partition n= 
n21+ n2). 
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