
Chapter 7

Missing Data in Meta-analysis: Strategies

and Approaches

Abstract This chapter provides an overview of missing data issues that can occur

in a meta-analysis. Common approaches to missing data in meta-analysis are

discussed. The chapter focuses on the problem of missing data in moderators of

effect size. The examples demonstrate the use of maximum likelihood methods and

multiple imputation, the only two methods that produce unbiased estimates under

the assumption that data are missing at random. The methods discussed in this

chapter are most useful in testing the sensitivity of results to missing data.

7.1 Background

All data analysts face the problem of missing data. Survey researchers often find

respondents may refuse to answer a question, or may skip an item on a question-

naire. Experimental studies are also subject to drop-outs in both the treatment and

control group. In meta-analysis, there are three major sources of missing data:

missing studies from the review, missing effect sizes or outcomes for the analysis,

and missing predictors for models of effect size variation. This chapter will provide

strategies for testing the sensitivity of results to problems with missing data. As

discussed throughout this chapter, current methods for missing data require strong

assumptions about the reasons why data are missing, and about the distribution of

the hypothetically complete data that cannot be verified empirically. Instead, re-

analyzing the data under a number of differing assumptions provides the reviewer

with evidence of the robustness of the results.

Over the past 20 years, statisticians have conducted an extensive amount of

research into methods for dealing with missing data. Schafer and Graham (2002)

point out that the main goal of statistical methods for missing data is not to recover

or estimate the missing values but to make valid inferences about a population of

interest. Thus, Schafer and Graham note that appropriate missing data techniques

are embedded in the particular model or testing procedure used in the analysis. This

chapter will take Schafer and Graham’s perspective and provide missing data
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methods adapted from the statistical literature (Little and Rubin 1987; Schafer

1997) for use in meta-analysis. This chapter will focus on the sensitivity of results

to missing data rather than on providing an alternative set of estimates that

compensate for the missing data. For many missing data methods, the strategy

involves recognizing the greater amount of uncertainty in the data caused by the

missing information. Thus, many missing data methods result in a larger variance

around the model estimates. This chapter will focus on methods that formally

incorporate a larger amount of variance when missing data occurs.

The twomost commonstrategies suggested formissingeffect sizes inmeta-analysis

do not take into account the true level of uncertainty caused by missing data. These

two strategies involve filling in either the observedmean using studies that report that

missing variable, and filling in a zero for studies missing an effect size. Filling in the

same value for missing observations in any data set will reduce the variance in the

resulting estimate, making the estimates seem to contain more information than is

truly available. Later in the chapter, we will discuss imputation strategies that

incorporate a larger degree of uncertainty in the estimates reflecting the missing

information in the data, and we will use these estimates to judge the sensitivity of

results to assumptions about missing data.

7.2 Missing Studies in a Meta-analysis

One common form of missing data in a meta-analysis is missing studies. The most

common cause of missing studies is publication bias. As many researchers have

shown (Begg and Berlin 1988; Hemminki 1980; Rosenthal 1979; Smith 1980),

there is a bias in the published literature toward statistically significant results. If a

search strategy for a meta-analysis focuses only on published studies, then there is a

tendency across many disciplines for the overall effect size to be biased toward

statistically significant effects, thus over-estimating the true difference between the

treatment and control group or the strength of the association between two

measures. One strategy for addressing publication bias is the use of thorough search

strategies that focus on published, unpublished and fugitive literatures. This section

will provide an overview of strategies detecting and examining the potential for

publication bias; more detailed information can be found in Rothstein et al. (2005).

7.2.1 Identification of Publication Bias

Even when a search strategy aims for a wide range of published and unpublished

studies, the resulting sample of studies may still suffer from publication bias. One

set of strategies associated with missing studies focuses on the identification of

publication bias. The simplest and most widely known of these strategies is the

funnel plot (Sterne et al. 2005). Funnel plots are scatterplots of the effect size on the
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x-axis and the sample size, variance, or study level weight of the effect size on the

y-axis. (Recall that the study level weight is the inverse of the variance of the effect

size). With no publication bias, the plot should resemble a funnel with the wider end

of the funnel associated with studies of small sample sizes and large variances. The

smaller end of the funnel should have effect sizes that have larger sample sizes

and smaller variances, centered around the mean of the effect size distribution.

If publication bias exists, then the plot will appear asymmetric. If small studies with

small sample sizes are missing, then the funnel plot will appear to have a piece

missing at its widest point. The quadrant with small effect sizes and small sample

sizes would be those most likely to be censored in the published literature. If small

effect sizes are, in general, more unlikely to appear in the literature, then the funnel

will have fewer studies in the area of the graph corresponding to effect sizes close

to zero, despite the sample size.

7.2.1.1 Example of Funnel Plot

Figure 7.1 is a funnel plot of data taken from Hackshaw et al. (1997) study of the

relationship between passive smoking and lung cancer in women. The 33 studies

in the meta-analysis compare the number of cases of lung cancer diagnosed in

individuals whose spouses smoke with the number of cases of lung cancer in

individuals whose spouses are non-smokers. The data used to construct this plot

are given in the Data Appendix. The x-axis is the log-odds ratio, and the y-axis is the

standard error of the log-odds ratio. There is a gap in the lower left-hand corner of

the funnel plot, indicating that some studies with large standard errors and negative

log-odds ratios could be missing. Thus, we see some evidence of publication bias

here (Fig. 7.1).
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Fig. 7.1 Funnel plot for passive smoking data
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While funnel plots are easily constructed, they can be difficult to interpret. Many

conditions can lead to asymmetric plots even when the sample of studies is not

affected by publication bias. A more formal test of publication bias was proposed

by Egger et al. (1997) using regression techniques. Egger et al.’s method provides a

test of whether a funnel plot shows evidence of asymmetry. The method involves

standardizing the effect size into a standard normal deviate and regressing this

transformed effect size on the precision of the effect size, defined as the inverse of

the standard error of the effect size. The regression equation can be expressed as

Tiffiffiffiffi
vi

p ¼ b̂0 þ b̂1
1ffiffiffiffi
vi

p (7.1)

where Ti is the effect size for study i, and vi is the standard error for the effect size
in study i. When the funnel plot is symmetric, that is, when there is no evidence of

publication bias, then b̂0 is close to zero. Symmetric funnel plots will produce an

estimated regression equation that goes through the origin. Standardizing small

effect sizes using the standard error should create a small standard normal deviate.

In contrast, larger studies will produce larger standard normal deviates since their

standard errors will be small. When publication bias is present, we may have large

studies with normal deviates that are smaller than studies with small sample

sizes – indicating that the small studies differ from large studies in their estimates

of effect size.

Figure 7.2 provides the scatterplot of the standardized effect size by the inverse

of the standard error of the effect size in the passive smoking data. The dotted line in

the graph is the regression line given in (7.1). Table 7.1 provides the regression

coefficients for (7.1) fit to the passive smoking data. The value for the intercept,

b0, is statistically different from zero, thus indicating that there is evidence of

publication bias in the passive smoking data.

7.2.2 Assessing the Sensitivity of Results to Publication Bias

If a reviewer suspects publication bias in the meta-analytic data, there are two

general classes of methods for exploring the sensitivity of results to publication

bias. The first method, trim-and-fill (Duval and Tweedie 2000) is fairly easy to

implement, but relies on strong assumptions about the nature of the missing studies.

As Vevea and Woods (2005) point out, the trim-and-fill method assumes that the

missing studies are one-to-one reflections of the largest effect sizes in the data set,

in essence, that the missing studies have effect sizes values that are the negative of

the largest effect sizes observed in the data set. In addition, the trim-and-fill method

may lead to biased results if the effect sizes are in fact heterogeneous. Vevea and

Woods present a second method that produces estimates for models of effect size

under a series of possible censoring mechanisms, addressing the shortcomings they
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find with the trim-and-fill method This second method provides more flexibility

than trim-and-fill since it allows the examination of sensitivity for a range of models

of effect size.

The trim-and-fill method (Duval and Tweedie 2000) is based on asymmetry in

the funnel plot. This method builds on the funnel plot by “filling in” effect sizes that

are missing from the funnel and then estimating the overall mean effect size

including these hypothetical values. The assumption in this method is that there

are a set of missing effect sizes that are “mirror images” of the largest effect sizes

in the data set. In other words, the method inserts missing effect sizes that are of the

opposite sign, and are mirror reflections of the largest observed effect sizes

with similar sample sizes. The theoretical basis for the method is beyond the

scope of this text, but the analysis itself is fairly simple. The idea is to first estimate

how many effect sizes are “missing” in order to create a symmetric funnel plot.

This computation may require a few iterations to obtain the estimate. Once the

researcher computes the number of missing effect sizes, hypothetical values

for these missing observations are used to re-estimate the mean effect size.

This new mean effect size incorporates the possible effects of publication bias.

Table 7.1 Egger’s test for the passive smoking data set

Coefficient Estimate SE t-Value p

b0 0.933 0.417 2.236 0.033

b1 �0.0155 0.098 �0.158 0.875
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Fig. 7.2 Egger’s test for publication bias for passive smoking data
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In practice, knowing how much bias is possible allows a test of the sensitivity of

results. The reviewer should decide if the difference in these two values is of

substantive importance, and should report these values to readers. While space

does not permit a full example illustrating trim-and-fill, Duval (2005) provides

a step-by-step outline for completing the method. Figure 7.3 is a funnel plot of

the smoking data with the “missing” effect sizes represented by solid circles.

The bottom of the plot shows the mean effect size computed with only the observed

studies, and the mean effect size when the “missing” studies are included. As seen

in Fig. 7.3, the mean effect size does not change significantly if we assume some

publication bias.

A second strategy involves modeling publication bias using a censoring mecha-

nism as described by Vevea andWoods (2005). The model illustrated by Vevea and

Woods proposes a number of censoring mechanisms that could be operating in the

literature. These censoring mechanisms are based on the type of censoring and the

severity of the problem. In general, Vevea and Woods examine the impact of

censoring where the smallest studies with the smallest effect sizes are missing

(one-tailed censoring) and where the studies with non-significant effect sizes (two-

tailed censoring) are missing. Vevea and Woods point out that the trim-and-fill

method assumes that the missing studies are one-to-one reflections of statistically

significant effect sizes, and that the method can only examine the sensitivity of

estimates of the mean effect size. Vevea and Woods’ method can examine the

sensitivity of fixed, random and mixed effects models of effect size to publication

bias. These methods do require the use of more flexible computing environments,

and reviewers may find them more difficult. Readers interested in methods for

publication bias will find more details in Rothstein et al. (2005).
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Fig. 7.3 Funnel plot for passive smoking data with Trim and Fill results
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7.3 Missing Effect Sizes in a Meta-analysis

When effect sizes are missing from a study, there are few missing data strategies to

analyze the data. The most common method used by reviewers is to drop these

studies from the analysis. The problem is similar to missing data in primary studies.

If an individual patient does not have a measure for the target outcome, then that

patient cannot provide any information about the efficacy of the treatment.

One reason for missing effect sizes is that reviewers either cannot compute an

effect size from the information given in a study or do not know how to compute an

effect size from the results of the study. For example, studies may fail to report

summary statistics needed to compute an effect size such as means and standard

deviations for standardized mean differences, or frequencies for the odds ratio.

Other studies may report only the summary test statistic such as a t-test or an F-test,
or only the p-value for the test. These difficulties often occur with older studies

since professional organizations such as the American Psychological Association

and the American Medical Association now have standards for reporting that assist

reviewers in extracting information from a meta-analysis.

Another reason for missing effect sizes in more recently published studies arises

when a reviewer does not know how to translate complex statistical results derived

from techniques such as factorial ANOVA, regression models, or hierarchical

linear models into an effect size for the review. A related problem occurs when

the studies in the review report a wide variety of statistics. For example, one study

in the review may report a t-test from a quasi-experimental study, while another

study may report a correlation coefficient from an observational study. The question

is whether these differing measures of effect size can and should be combined in the

meta-analysis, or whether the reviewer should consider certain types of effect sizes

as missing. Lipsey andWilson (2001) and Shadish et al. (1999) provide a number of

tools for computing effect sizes from commonly provided information in a study.

Wilson (2010) provides a free, web-based, effect size calculator that obtains effect

sizes from a large array of reported statistics. In practice, the reviewer should try

multiple methods for computing an effect size from the data given in the study, and

to contact primary authors for available information. If effect sizes are still not

available, then the reviewer should explore the sensitivity of results to publication

bias. One suggestion often used by reviewers is to impute a value of 0 for all

missing effect sizes. While this method seemingly provides a conservative estimate

of the mean effect size, the standard errors for the mean effect size will be

underestimated. As will be discussed in the next sections, imputing a single value

for any missing observation will not reflect accurately the uncertainty in the data.

A second reason for missing outcomes in a study is selective reporting. A number

of researchers in medicine have documented primary studies where researchers have

not reported on an outcome that was gathered. In many cases, these outcomes are

also ones that are not statistically significant, or may be outcomes reporting on an

adverse outcome. In the Cochrane Collaboration, reviewers are required to report

on whether selective reporting of outcomes has occurred in a study in the Risk of
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Bias table. Reviewers who suspect outcome reporting bias have few strategies for

dealing with this problem aside from contacting the primary authors for the missing

information. Researchers (Chan et al. 2004; Williamson et al. 2005) have also

developed methods for assessing the potential bias in results when some outcomes

are selectively missing. In the long term, reporting standards and registries of

primary studies may be the most effective strategies for ensuring complete reporting

of all outcomes gathered in a study.

7.4 Missing Moderators in Effect Size Models

Another form of missing data in a meta-analysis is missing moderators or predictors

in effect size models. This form of missing data occurs when the reviewer wants to

code particular aspects of the primary study, but this information is not provided in

the study report. A reviewer examining a body of research on a topic has, in one

sense, fewer constraints than a primary researcher. When a primary researcher

plans a study, they must make decisions about the number and type of measures

used, the optimal design and methods, and in the final report, about what informa-

tion is most relevant. In contrast, a reviewer can examine questions about how the

different decisions made by the primary researcher about study design, measures,

and reporting relates to variation in study results.

Disciplinary practices in a given area of research may constrain how primary

authors collect, measure and report information in a study. Orwin and Cordray

(1985) use the term macrolevel reporting to refer to practices in a given research

area that influence how constructs are defined and reported. In a recent meta-

analysis, Sirin (2005) found multiple measures of socioeconomic status in studies

examining the relationship between income and academic achievement. These

measures included ratings of parents’ occupational status, parental income, parental

education, free lunch eligibility, as well as composites of these measures.

Researchers in some fields may be more inclined to use ratings of parents’ occupa-

tion status whereas other educational researchers may only have a measure of free

lunch eligibility available. Thus, parents’ occupation status may be missing in some

studies since the researchers in one field may rely on free lunch eligibility, for

example, as the primary measure of socioeconomic status. Differences in reporting

among primary studies could be related to disciplinary practices in the primary

author’s field. Primary authors may also be constrained by a particular journal’s

publication practices, and thus do not report on information a reviewer may

consider important.

Researchers also differ in their writing styles and thoroughness of reporting.

Orwin and Cordary (1985) use the term microlevel reporting quality to refer to

individual differences among researchers in their reporting practices. In some cases,

a moderator that is not reported among all studies in a review could be missing in a

random way due to the individual differences among researchers.

86 7 Missing Data in Meta-analysis: Strategies and Approaches



Another reason study descriptors may be missing from primary study reports

relates to bias for reporting only statistically significant results. For example, a

primary researcher may be interested in the relationship between the percentage of

low-income children in a classroom and classroom achievement. If the primary

researcher finds that the percentage of low-income children in a classroom is not

related to classroom achievement, then they may report only that the statistic did

not reach statistical significance. Williamson et al. (2005) provide a discussion of

this problem raising the possibility that the likelihood of a study reporting a given

descriptor variable is related to the statistical significance of the relationship

between the variable and the outcome. In this case, we have selective predictor

reporting that operates in a similar manner to selective outcome reporting as

described above.

Researchers may also avoid reporting study descriptors when those values are

not generally acceptable. For example, if a researcher obtains a racially homoge-

neous sample, the researcher may hesitate to report fully the actual distribution of

ethnicity in the sample. This type of selective reporting may also occur when

reporting in a study is influenced by a desire to “clean up” the results. For example,

attrition information may not be reported in a published study in order to present a

more positive picture. In both of these cases, the values of the study descriptor

influence whether the researcher reports those values.

Missing data in a meta-analysis occur in the form of missing studies from the

review, missing effect sizes and missing predictors. The cases of missing studies

and missing effect sizes correspond to missing an outcome in a primary study. The

only approach to missing outcomes is checking the sensitivity of results to publica-

tion bias or censoring. The major class of missing data methods in the statistical

literature applies most directly to missing data on predictors in models of effect

size. The remainder of this chapter discusses the assumptions, techniques and

interpretations of missing data methods applied to meta-analysis with an emphasis

on handling missing predictors in effect size models.

7.5 Theoretical Basis for Missing Data Methods

The general approach used in current missing data methods involves using the data

at hand to draw valid conclusions, and not to recover all the missing information to

create a complete data set. This approach is especially applicable to meta-analysis

since missing data frequently occur because a variable was not measured, and is

not recoverable. Thus, the approaches taken in this chapter do not attempt to

replace individual missing observations, but instead either estimate the value for

summary statistics in the presence of missing data or sample several possible

values for the missing observations from a hypothetical distribution based on the

data we do observe.

The methods used in this chapter make strong assumptions about the distribution

of the data, and about the mechanism that causes the missing observations.
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Generally, the methods here require the assumption that the joint distribution of the

effect size and moderator variables is multivariate normal. A second assumption is

that the reasons for the missing data do not depend on the values of the missing

observations. For example, if our data are missing measures of income for studies

with a large proportion of affluent participants, then the methods we discuss here

could lead to biased estimates. One major difficulty in applying missing data

methods is that assumptions about the nature of the missing data mechanism cannot

be tested empirically. These assumptions can only be subjected to the “is it

possible” test, i.e., is it possible that the reasons for missing observations on a

particular variable do not depend directly on the values of that variable? Missing

observations on income usually fail the test, since it is a well-known result in survey

sampling that respondents with higher incomes tend not to report their earnings.

The following section examines these assumptions in the context of meta-analysis.

7.5.1 Multivariate Normality in Meta-analysis

The missing data methods used in this chapter rely on the assumption that the joint

distribution of the data is multivariate normal. Thus, meta-analysts must assume

that the joint distribution of the effect sizes and the variables coded from the studies

in the review follow a normal distribution. One problematic issue in meta-analysis

concerns the common incidence of categorical moderators in effect size models.

Codes for characteristics of studies often take on values that indicate whether a

primary author used a particular method (e.g., random assignment or not) or a

certain assessment for the outcome (e.g., standardized protocol or test, researcher

developed rating scale, etc.). Schafer (1997) indicates that in the case of categorical

predictors, the normal model will still prove useful if the categorical variables are

completely observed, and the variables with missing observations can be assumed

multivariate normal conditional on the variables with complete data. The example

later in the chapter examines a meta-analysis on gender differences in transforma-

tional leadership. Say we have missing data from some studies on the percent of

men in the sample of participants who are surveyed in each study. We can still

fulfill the multivariate normality condition if we can assume that the variable with

missing observations, the percent of males in the sample, is normally distributed

conditional on a fully observed categorical variable such as whether or not the first

author is a woman. If the histogram of the percent of male subjects in the sample is

normally distributed for the set of studies with male first authors and for the set of

studies with female first authors, then we have not violated the normality assump-

tion. Some ordered categorical predictors can also be transformed to allow the

normal assumption to apply. If key moderators of interest are non-ordered categor-

ical variables, and these variables are missing observations, then missing data

methods based on the multinomial model may apply. There is currently no research

on how to handle missing categorical predictors in meta-analysis.
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7.5.2 Missing Data Mechanisms or Reasons for Missing Data

In addition to assuming that the joint and/or conditional distribution of the data is

multivariate normal, the methods discussed in this chapter also require the

assumption that the missing data mechanism is ignorable. There are two

conditions that meet the conditions of ignorability, missing completely at random

(MCAR) data, and missing at random (MAR) data (Rubin 1976). Missing data are

missing completely at random when the cases with completely observed data are a

random sample of the original data. When there are small amounts of missing data

on an important variable, often analysts assume that the completely observed

cases are as representative of the target population as the original sample. Thus,

when data are missing completely at random, the data analyst does not need to

know the exact reasons or mechanisms that caused the missing data; analyzing

only the cases with complete observations will yield results that provide unbiased

estimates of population parameters.

As applied to meta-analysis, individual differences among primary authors in

their reporting practices may result in missing predictors that could be considered

missing completely at random. The difficulty lies in gathering evidence that the

missing predictors are missing completely at random. One strategy suggested is

using logistic regression models to examine the relationships between whether a

given predictor is observed or not and values of other variables in the data set. The

difficulty arises when these models do not adequately explain the probability of

missing a predictor. The relationships between observed variables and missing

variables could be more complex than represented in the logistic regression

model, or the probability of observing a value could be dependent on other

unknown information. Schafer (1997) suggests that a more practical solution is to

use as much information in the data set to estimate models in the presence of

missing data, a point that will be elaborated later in the chapter.

A second condition that meets the conditions of ignorability is data missing at

random. Unlike MCAR data, the cases with completely observed data are not a

random sample of the original data. When data are MAR, the probability of missing

an observation depends on the values of completely observed variables. Data are

MAR if the conditional distribution of the missing values depends only on

completely observed variables and not on variables with missing observations.

This assumption is less stringent than MCAR, and is plausible in many missing

data situations in meta-analysis. For example, some studies may report the income

level of subjects as a function of the percent of students who qualify for free lunch,

while others report income level as the average income reported by parents. The

differences between these studies could be due to the discipline of the primary

author – studies in education tend to use the percent of students with low income in

a school while larger-scale studies may have the resources to conduct a survey of

parents to obtain a more direct measure of income. A missing value for a particular

measure of income in a particular study is not necessarily related to the value of

income itself but to the choices of the primary author and constraints on the
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published version of the study. Thus, if we can posit a plausible mechanism for the

missing observations, say the disciplinary background of the primary author, and

this variable is completely observed in the data, then we can consider income in this

instance MAR.

One set of methods that cannot be addressed fully in this chapter are methods for

nonignorable missing data. Nonignorable missing data occur when the reason for a

missing observation is the value of that observation. For example, self-reports of

income are more frequently missing for those respondents with high income, a

classic example of nonignorable missing data. In the case of nonignorable missing

data, the analysis must incorporate a model for the missing data mechanism instead

of ignoring it as in the case of MCAR and MAR data. A special case of

nonignorable missing data is publication bias. As discussed earlier in the chapter,

these methods usually require specialized computing environments, and provide

information about the sensitivity of results to assumptions about the missing data.

7.6 Commonly Used Methods for Missing Data

in Meta-analysis

Prior to Little and Rubin’s (1987) work, most researchers employed one of three

strategies to handle missing data: using only cases with all variables completely

observed (listwise deletion), using available cases that have particular pairs of

variables observed (pairwise deletion), or replacing missing values on a given

variable with a single value such as the mean for the complete cases (single value

imputation). The performance of these methods depends on the validity of the

assumptions about why the data are missing. In general, these methods will produce

unbiased estimates only when data are missing completely at random. The main

problem with the use of these methods is that the standard errors do not accurately

reflect the fact that variables have missing observations.

7.6.1 Complete-Case Analysis

In complete-case analysis, the researcher uses only those cases with all variables

fully observed. This procedure, listwise deletion, is usually the default procedure

for many statistical computer packages. When the missing data are missing

completely at random, then complete-case analysis will produce unbiased results

since the complete cases can be considered a random sample from the originally

identified set of cases. Thus, if a synthesist can make the assumption that values

are missing completely at random, using only complete cases will produce

unbiased results.
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In meta-analysis as in other analyses, using only complete cases can seriously

limit the number of observations available for the analysis. Losing cases decreases

the power of the analysis, and also ignores the information contained in the

incomplete cases (Kim and Curry 1977; Little and Rubin 1987).

When data are missing because of a nonignorable response mechanism or are

MAR, complete case analysis yields biased estimates since the complete cases

cannot be considered representative of the original sample. With nonignorable

missing data, the complete cases observe only part of the distribution of a particular

variable. With MAR data, the complete cases are also not a random sample of the

original sample. But with MAR data, the incomplete cases still provide information

since the variables that are completely observed across the data set are related to the

probability of missing a particular variable.

7.6.1.1 Example: Complete-Case Analysis

The data for the examples that follow are adapted from a meta-analysis by Eagly

et al. (2003) that examines gender differences in transformational, transactional,

and laissez-faire leadership styles. Six moderators are used in this example: Year

the study was published (Year), if the first author is female, the average age of the

participants, the size of the organization where the study was conducted, whether

random methods were used to select the participants from the organization, and the

percent of males in the leadership roles in the organization. Table 7.2 provides the

complete case results for a meta-regression of the transformational leadership data.

Only 22 or 50% of the cases include all five predictor variables. Positive effect sizes

indicate that males were found to score higher on transformational leadership

scales, while negative effect sizes favor females. For this sample of studies, gender

differences in favor of females are associated with more recently published studies,

with studies that have older samples of participants, when the study’s first author is

female, and in studies conducted in larger organizations. Gender differences in

favor of males are found in studies with a higher percentage of men in leadership

roles in the sample, and when random methods were used to select the sample from

the target population. The complete case results can be obtained from any weighted

regression program usually by default. Most statistical computing packages auto-

matically delete any cases missing at least one variable in the model.

Table 7.2 Complete case analysis using the gender and leadership data

Variable Coefficient SE Z p

Intercept 58.033 22.650 2.562 0.005

Publication year �0.028 0.011 �2.446 0.007

Average age of sample �0.040 0.005 �7.946 0.000

Percent of male leaders 0.001 0.002 4.472 0.000

First author female �0.372 0.087 �4.296 0.000

Size of organization �0.308 0.103 �2.989 0.001

Random selection used 0.110 0.035 3.129 0.000
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7.6.2 Available Case Analysis or Pairwise Deletion

An available-case analysis or pairwise deletion estimates parameters using as much

data as possible. In other words, if three variables in a data set are missing 0%, 10%

and 40% of their values, respectively, then the correlation between the first and

third variable would be estimated using the 60% of cases that observe both

variables, and the correlation between the first and second variable would use the

90% of cases that observe these two variables. A different set of cases would

provide the estimate of the correlation of the second and third variables since

there is the potential of having between 40% and 50% of these cases missing

both variables. For example, Table 7.3 shows the pairs of cases that would be

used to estimate parameters using available case analysis in the leadership data. The

letter O indicates that the variable was observed in that missing data pattern.

Assuming the effect sizes are completely observed, the estimate of the correlation

between the effect size and the percentage of men in leadership roles would be

based on 37 studies or 84% of the studies. The correlation between effect size and

average age of the sample would use 25 studies or 57% of the sample. The

estimated correlation of percentage of men in leadership roles and average age of

the sample would use only 22 studies or 50% of the sample.

This simple example illustrates the drawback of using available case analysis –

each correlation in the variance-covariance matrix estimated using available cases

could be based on different subsets of the original data set. If data are MCAR, then

each of these subsets are representative of the original data, and available case

analysis provides estimates that are unbiased. If data are MAR, however, then

each of these subsets is not representative of the original data and will produce

biased estimates.

Much of the early research on methods for missing data focuses on the perfor-

mance of available case analysis versus complete case analysis (Glasser 1964;

Haitovsky 1968; Kim and Curry 1977). Fahrbach (2001) examines the research

on available case analysis and concludes that available case methods provide more

efficient estimators than complete case analysis when correlations between two

independent variables are moderate (around 0.6). This view, however, is not shared

by all who have examined this literature (Allison 2002).

One statistical problem that could arise from the use of available cases under any

form of missing data is a non-positive definite variance-covariance matrix, i.e., a

Table 7.3 Missing data patterns in leadership data

Pattern Effect size % male leaders Average age N

0 O O O 22 (50%)

1 O O – 15 (34%)

2 O – O 3 (7%)

3 O – – 4 (9%)

N 44 (100%) 37 (84%) 25 (57%) 44 (100%)

O indicates observed in data
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variance-covariance matrix that cannot be inverted to obtain the estimates of slopes

for a regressionmodel. One reason for this problem is that different subsets of studies

are used to compute the elements of the variance-covariancematrix. Further, Allison

(2002) points out that a more difficult problem in the application of available case

analysis concerns the computation of standard errors of available case estimates.

At issue is the correct sample size when computing standard errors since each

parameter could be estimated with a different subset of data. Some of the standard

errors could be based on the whole data set, while others may be based on the subset

of studies that observe a particular variable or pair of variables. Though many

statistical computing packages implement available case analysis, how standard

errors are computed differs widely.

7.6.2.1 Example: Available Case Analysis

Table 7.4 provides the results from SPSS estimating a meta-regression for the

leadership studies using pairwise deletion. In this analysis, gender differences

favoring females are associated with an older sample and with studies whose first

author is female. Gender differences favoring males are associated with a higher

percentage of men in leadership roles, larger organizations in the sample, and with

more recent studies. The last two findings, related to larger organizations and more

recent findings, contradicts the findings from the complete case analysis.

While available case analysis is easy to understand and implement, there is little

consensus in the literature about the conditions where available case analysis

outperforms complete case analysis when data are MCAR. As described above,

the performance of available case analysis may relate to the size of the correlations

between variables in the data, but there is no consensus about the optimal size of

these correlations needed to produce unbiased estimates.

7.6.3 Single Value Imputation with the Complete Case Mean

When values are missing in a meta-analysis (or in any statistical analysis), many

researchers have replaced the missing value with a “reasonable” value such as the

Table 7.4 Available case analysis

Variable Coefficient SE Z p

Intercept �46.283 19.71 �2.348 0.009

Publication year 0.024 0.010 2.383 0.009

Average age of sample �0.047 0.006 �7.625 0.000

Percent of male leaders 0.013 0.002 6.166 0.000

First author female �0.260 0.058 �4.455 0.000

Size of organization 0.185 0.062 3.008 0.001

Random selection used 0.037 0.041 0.902 0.184
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mean for the cases that observed the variable. Little and Rubin (1987) refer to this

strategy as single-value imputation. Researchers commonly use two different

strategies to fill in missing values. One method fills in the complete case mean,

and the other uses regression with the complete cases to estimate predicted values

for missing observations given the observed values in a particular case.

Replacing the missing values in a variable with the complete case mean of the

variable is also referred to as unconditional mean imputation. When we substitute a

single value for all the missing values, the estimate of the variance of that variable is

decreased. The estimated variance thus does not reflect the true uncertainty in the

variable – instead the smaller variance wrongly indicates more certainty about the

value. These biases get compounded when using the biased variances to estimate

models of effect size. Imputation of the complete case mean never leads to unbiased

variances of variables with missing data.

7.6.3.1 Example: Mean Imputation

In Table 7.5, the missing values of average age and percent of men in leadership

roles were imputed with the complete case mean. These values are given under the

complete case means and standard deviations. While the means for the variables

remains the same, the standard deviations are smaller for the variables when

missing values are replaced by the complete case mean. The problem is

compounded in the regression analysis in Table 7.6. These results would lead us

to different conclusions from those based on either the complete-case or pairwise

deletion analyses.

Using mean imputation in this example would lead us to conclude that men score

higher on transformational leadership scales only in studies that have a larger

Table 7.5 Comparison of complete-case and mean imputation values

Variable N Mean SD

Average age of sample 22 44.88 6.629

Average age, mean imputed 44 44.88 4.952

Percent of male leaders 22 64.97 17.557

Percent of male leaders, mean imputed 44 64.97 16.060

Table 7.6 Linear model of effect size for leadership data using mean imputation

Variable Coefficient SE Z p

Intercept 21.165 11.468 1.846 0.032

Publication year �0.01 0.006 �1.783 0.037

Average age of sample �0.024 0.004 �6.537 0.000

Percent of male leaders 0.006 0.001 4.753 0.000

First author female �0.076 0.035 �2.204 0.014

Size of organization �0.064 0.034 �1.884 0.030

Random selection used �0.013 0.028 �0.469 0.319
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percentage of male leaders in the sample. The use of random selection is not related

to variability in the effect size across studies. All the other predictors favor

women’s scores on transformational leadership.

7.6.4 Single Value Imputation Using Regression Techniques

A single-value imputation method that provides less biased results with missing

data was first suggested by Buck (1960). Instead of replacing each missing value

with the complete case mean, each missing value is replaced with the predicted

value from a regression model using the variables observed in that particular case as

predictors and the missing variable as the outcome. This method is also referred to

as conditional mean imputation or as regression imputation. For each pattern of

missing data, the cases with complete data on the variables in that pattern are used

to estimate regressions using the observed variables to predict the missing values.

The end result is that each missing value is replaced by a predicted value from a

regression using the values of the observed variables in that case. When data are

MCAR, then each of the subsets used to estimate prediction equations are repre-

sentative of the original sample of studies. This method results in more variation

than in unconditional mean imputation since the missing values are replaced with

values that depend on the regression equation. However, the standard errors using

Buck’s method are still too small. This underestimation occurs since Buck’s

method replaces the missing values with predicted values that lie directly on the

regression line used to impute the values. In other words, Buck’s method results in

imputing values that are predicted exactly by the regression equation without error.

Little and Rubin (1987) present the form of the bias for Buck’s method and

suggest corrections to the estimated variances to account for the bias. If we have

two variables, Y1 and Y2, and Y2 has missing observations, then the form of the bias

using Buck’s method to fill in values for Y2 is given by

ðn� nð2ÞÞðn� 1Þ�1s22:1;

where n is the sample size, n(2) is the number of cases that observe Y2, and s22:1 is
the residual variance from the regression of Y2 on Y1. Little and Rubin also provide
the more general form of the bias with more than two variables. Table 7.7 compares

the complete case means and standard deviations of average age of the sample and

percent of male leaders with those obtained using regression imputation (Buck’s

method) and Little and Rubin (1987) correction.

The standard deviations for the corrected regression imputation results are larger

than for both complete cases and for the uncorrected regression imputation.

The correction reflects the increased uncertainty in the estimates due tomissing data.

Note that correcting the bias in Buck’s method involves adjusting the variance of

the variable with missing observations. Using Little and Rubin (1987) correction
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results in a corrected covariance matrix, and not individual estimates for each

missing observation. Thus, estimating the linear model of effect size in our example

will require estimating the coefficients using only the variance-covariance matrix.

To date, there has not been extensive research on the performance of Buck’s

method to other more complex methods for missing data in meta-analysis. As seen

above, one advantage of using Buck’s method with the corrections suggested by

Little and Rubin is that the standard errors of estimates reflect the uncertainty in the

data and lead to more conservative and less biased estimates than complete case and

available case methods. While using Buck’s method is fairly simple, the

adjustments of the variances and covariances of variables with missing

observations adds another step to the analysis. In addition, it is not clear how to

utilize the corrected variances and covariances when estimating weighted regres-

sion models of effect sizes in meta-analysis. While it is possible to estimate a linear

model using a covariance matrix in the major statistical packages, it is not clear how

to incorporate the weights into the corrected covariance matrix.

When missing predictors are MCAR, then complete case analysis, available case

analysis and conditional mean imputation have the potential for producing unbiased

results. The cost of using these methods lies in the estimation of standard errors. For

complete case analysis, the standard errors will be larger than those from the

hypothetically complete data. In available case and conditional mean imputation,

the standard errors will be too small, though those from conditional mean imputa-

tion can be adjusted. When data are MAR or are missing due to a nonignorable

response mechanism, none of the simpler methods produce unbiased results.

7.6.4.1 Example: Regression Imputation

Table 7.8 provides the estimates of the linear model of effect size when using

regression imputation. The results in the table were produced using SPSS Missing

Values Analysis, saving a data set where missing values are imputed using

regression.

These results differ from the mean imputation results in that both when the first

author is female and whether random selection was used are not related to effect

size magnitude. As in the mean imputation results, only percent of male leaders is

related to high scores on transformational leadership for men. These results are

again not consistent with the available case or complete case results.

Table 7.7 Comparison of methods for imputing missing data

Complete cases

N ¼ 22

Regression imputation

(uncorrected) N ¼ 44

Regression imputation

(corrected) N ¼ 44

Variable Mean SD Mean SD Mean SD

Average age of sample 45.23 6.70 44.52 5.52 44.52 6.91

Percent of male leaders 64.23 17.44 65.44 16.22 65.44 17.52
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7.7 Model-Based Methods for Missing Data in Meta-analysis

The simple methods for missing data discussed above do not provide unbiased

estimates under all circumstances. The general problem with these ad hoc methods

is that they do not take into account the distribution of the hypothetically complete

data. For example, filling in a zero for a missing effect size may be a reasonable

assumption, but it is not based on a plausible distribution for the effect sizes in a

review. The missing data methods outlined in this section begin with a model for

the observed data. Maximum-likelihood methods using the EM algorithm are based

on the observed data likelihood while multiple imputation techniques are based on

the observed data posterior distribution. Given the assumptions of ignorable miss-

ing data and multivariate normal data, the observed data likelihood and the

observed data posterior distribution will provide the information needed to estimate

important data parameters. The next sections outline both methods, providing an

example of its application.

7.7.1 Maximum-Likelihood Methods for Missing Data
Using the EM Algorithm

In statistical inference, we are interested in obtaining an estimate of a parameter

from our data that has optimal properties such as minimum variance and bias. The

method most often used to obtain parameter estimates is maximum likelihood.

Maximum likelihood methods are based on a joint density distribution of the data.

For example, if we assume that our data consist of a sample of n observations from
the normal distribution, then we can write down our joint density as a product of a

series of n normal densities. The maximum value for this density function is a

parameter estimate that has optimal properties. For example, the arithmetic average

of a set of observations from a normal distribution is the maximum likelihood

estimate of the mean of the population.

Table 7.8 Linear model of effect size for leadership data using

regression imputation

Variable Coefficient SE Z p

Intercept 38.436 11.181 3.438 0.001

Publication year �0.019 0.005 �3.515 <0.001

Average age of sample �0.024 0.003 �7.105 <0.001

Percent of male leaders 0.008 0.001 5.921 <0.001

First author female �0.044 0.035 �1.252 0.105

Size of organization �0.079 0.034 �2.339 0.010

Random selection used �0.018 0.028 �0.65 0.258
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When the data include missing observations, our data likelihood becomes

complicated. Since our goal is to make inferences about the population, the

relevant likelihood for our problem is the hypothetically complete data likelihood.

This complete data likelihood includes the density of the observed data given the

unknown parameters of the population distribution and the density of the missing

data given the observed data and the unknown population parameters. Since we do

not know the density of the missing data, it would seem impossible to compute the

maximum likelihood estimates of the complete data. However, Dempster et al.

(1977) developed an algorithm called the Expectation-Maximization algorithm,

or EM algorithm. As its name denotes, obtaining maximum likelihood estimates

requires an iterative process. In the first step, the Expectation or E-step, the

algorithm uses an estimate of the data parameters (such as the mean and covari-

ance matrix) to estimate plausible values for the missing observations. These

missing observations are then “filled in” for the Maximization or M-step where

the algorithm re-estimates the population parameters. Thus, in the E-step, we

assume that we have estimates of the population parameters, and we use these to

obtain values for the missing observations. In the M-step, we assume that the

missing observations are “real” and use them to re-compute the population

parameters. The iterations continue until the estimates of the population

parameters do not change, i.e., when the algorithm converges.

When we can assume the data is multivariate normal, the distribution for the

missing values given the observed values is also multivariate normal. It is important

to note that the algorithm provides the maximum likelihood estimates of the

sufficient statistics, the means and covariance matrix, and not the maximum

likelihood of any particular missing observation. Thus, we have maximum likeli-

hood estimates of the means, variances and covariances of our data that we can use

to obtain estimates of other parameters such as regression coefficients for a linear

model. We must also assume that the response mechanism is ignorable, i.e., that our

data are either MCAR or MAR so that the distribution of our data does not need to

include a specification of the response mechanism.

7.7.1.1 Example Using the EM Algorithm

There are a number of options available in commercially-available statistical

packages and in freeware for use in computing the EM estimates. Using Schafer’s

NORM (1999) program, we obtain the maximum likelihood estimates of the means

and standard deviations for our two variables with missing data, average of the

sample and percent of male leaders as seen in Table 7.9. These estimates are

compared with the estimates from the complete case and corrected regression

imputation analyses. The standard deviation from the EM algorithm falls between

the complete case and regression imputation estimates. The standard deviations are

of the same magnitude as the complete case estimates, generally reflecting the same

amount of “information” as in complete cases.
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The difficulty with using the EM algorithm in the context of meta-analysis is

similar to that of the corrected regression imputation analysis – it is not clear how to

estimate the weighted regression coefficients using the sufficient statistics matrix

(the matrix of means, variances and covariances). Thus, the EM algorithm has

limited applicability to meta-analysis since we do not yet have a method for

computing the weighted regression coefficients from the means, variances and

covariances of the variables in the data.

7.7.2 Multiple Imputation for Multivariate Normal Data

Multiple imputation has become the method of choice in many contexts of missing

data. The main advantage of multiple imputation is that the analyst uses the same

statistical procedures in the analysis phase that were planned for completely

observed data. In other words, in the analysis phase of multiple imputation, the

researcher does not need to adjust standard errors as in Buck’s method, and does not

need to estimate a regression from the covariance matrix as in maximum likelihood

with the EM algorithm. Multiple imputation, as its name implies, is a technique that

generates multiple possible values for each missing observation in the data. Each of

these values is used in turn to create a complete data set. The analyst uses standard

statistical procedures to analyze each of these multiply imputed data sets, and then

combines the results of these analyses for statistical inference.

Thus, multiple imputation consists of three phases. The first phase consists of

generating the possible values for each missing observation. The second phase then

analyzes each completed data set using standard statistical procedures. The third

phase involves combining the estimates from the analyses of the second phase to

obtain results to use for statistical inference. Each of these phases is discussed

conceptually below. Readers interested in more details should consult the following

works (Enders 2010; Schafer 1997).

7.7.2.1 Generating Multiple Imputations

Multiple imputation, like maximum likelihood methods for missing data, relies on a

model for the distribution of missing data given the observed data under the

Table 7.9 Comparison of estimates from the EM algorithm, complete-case analysis and regres-

sion imputation

Complete cases

N ¼ 22

Regression imputation

(corrected) N ¼ 44

EM algorithm

N ¼ 44

Variable Mean SD Mean SD Mean SD

Average age of sample 45.23 6.70 44.52 6.91 44.44 6.67

Percent of male leaders 64.23 17.44 65.44 17.52 65.65 17.21
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condition of MAR data. As in maximum likelihood, this distribution is complex.

The previous section discussed the use of the EM algorithm to estimate sufficient

statistics from this distribution assuming that the hypothetically complete data is

multivariate normal. Multiple imputation uses Bayesian methods to obtain random

draws from the posterior predictive distribution of the missing observations given

the observed observations. These random draws are completed in an iterative

process much like the EM algorithm. Given the means and covariance matrix of

our hypothetically complete multivariate normal data, we can then obtain the form

of the distribution of the missing observations given the observed data, and draw a

random observation from that distribution. That observation would be one plausible

value for a missing value for a given case. Once we have drawn plausible values for

all our missing observations, we obtain a new estimate of our means and covariance

matrix, and repeat the process. Note that again we are assuming that our response

mechanism is ignorable so that the posterior distribution also does not include a

specification of the response mechanism.

In order to generate these random draws, however, we need to use simulation

techniques such as Markov Chain Monte Carlo. These methods allow the use of

simulation to obtain random draws from a complex distribution. While this phase is

the most complex statistically, there are many commercial software packages and

freeware available to generate these imputations, especially in the case where we

can assume the complete data is multivariate normal. The Appendix provides

details about these computer packages.

7.7.2.2 Analyzing the Completed Data Sets

Multiple imputation was first developed in large-scale survey research to assist

researchers who wanted to use public data sets. The idea was to provide researchers

with a way to handle missing data that did not require specialized computer

programming skills or statistical expertise when using these publicly-available

data sets. In this second step, the researcher will obtain a series of completed data

sets, with each missing observation filled in using the methods in the prior section.

Once the imputations are generated, the analyst uses whatever methods were

originally planned for the data. These analyses are repeated for each completed

data set. As Schafer (1997) argues, for most applications of multiple imputation,

five imputations is sufficient to obtain estimates for statistical inference. In this

phase, the analyst takes each completed data set and obtains estimates for the

originally planned model. Table 7.10 provides the estimates for the linear model

of effect size for each of five imputations generated as discussed in the Appendix.

7.7.2.3 Combining the Estimates

Rubin (1987) provides the formulas for combining the multiply-imputed estimates

to obtain overall estimates and their standard errors. Let us denote the mean of our

target estimate for the ith parameter across all j imputations as
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m
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qij

where qij is the estimate of the ith parameter from the jth completed-data sets. To

obtain the standard errors of the qij, we need two estimates of variance. Denote the

variance of the estimate, qij, from the jth completed sets as se2(qi). The variance

across the j data sets of the estimate qi is given by

s2qi ¼
1
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The standard error of the points estimates of the qij is then given by
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Table 7.11 presents the multiply-imputed results for the leadership data. In this

analysis, none of the coefficients are significantly different from zero with

p ¼ 0.05.

Table 7.11 Multiply-imputed regression coefficients

Variable Coefficient SE Z p

Intercept 21.393 27.726 0.77 0.29

Publication year �0.010 0.014 �0.75 0.30

Average age of sample �0.021 0.009 �2.34 0.13

Percent of male leaders 0.006 0.003 2.06 0.14

First author female �0.138 0.094 �1.47 0.19

Size of organization �0.001 0.059 �0.02 0.49

Random selection used 0.033 0.076 0.43 0.37

Table 7.10 Imputations for the leadership data

Variable Imputation 1 Imputation 2 Imputation 3 Imputation 4 Imputation 5

Intercept 17.219 3.276 31.380 0.429 54.661

Publication year �0.008 �0.001 �0.016 0.000 �0.027

Average age of sample �0.018 �0.026 �0.010 �0.021 �0.031

Percent of male leaders 0.005 0.004 0.003 0.007 0.009

First author female �0.174 �0.186 �0.004 �0.147 �0.181

Size of organization �0.016 0.015 �0.046 �0.021 0.063

Random selection used 0.047 0.068 �0.043 �0.018 0.112
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Multiple imputation is now more widely implemented in statistical computing

packages. SAS (Yuan 2000) implements multiple imputation procedures with

multivariate normal data. The examples in this chapter were computed with

Schafer (1999) NORM program, a freeware program for conducting multiple

imputation with multivariate normal data. The Appendix provides information

about options for obtaining multiple imputation estimates and for combining

those estimates.

In general, multiple imputation is the recommended method for handling

missing data in any statistical analysis, including meta-analysis. The methods

illustrated in this chapter produce divergent results, indicating that the results of

this analysis are sensitive to missing data. A potential difficulty in this data could

be power since there are just slightly over 40 studies available for analysis. More

research is needed to understand the conditions where meta-analysts should use

multiple imputation.

Appendix

Computing Packages for Computation of the Multiple
Imputation Results

There are a number of options for obtaining multiple imputation results in a meta-

analysis model. Two freeware programs are available. The first is the program

Norm by Schafer and available at http://www.stat.psu.edu/~jls/misoftwa.html. The

Norm program runs as a stand alone program onWindows 95/98/NT. The second is

a program available in R by Honaker et al. called Amelia II and available at http://

gking.harvard.edu/amelia/. Schafer’s norm program was used for the example

given earlier.

The program SAS includes two procedures, one for generating the multiple

imputations, PROC MI, and a second for analyzing the completed data sets,

PROC MIANALYZE. For obtaining the weighted regression results for meta-

analysis, the SAS procedure PROC MIANALYZE will have limited utility since

the standard errors of the weighted regression coefficients will need to be adjusted

as detailed by Lipsey and Wilson (2001). Below is an illustration of the use of

PROC MI for the leadership data.

R Programs

One program available in R for generating multiple imputations is Amelia II

(Honaker et al. 2011). Directions for using the program are available at http://

gking.harvard.edu/amelia/. Once the program is loaded into R, the following

command was used to generate m ¼ 5 imputed data sets.

> a.out < �amelia(leadimp, m ¼ 5, idvars ¼ "ID")
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The imputed data sets can be saved for export into another program to complete

the analyses using the command,

>write.amelia(obj ¼ a.out, file.stem ¼ "outdata").

where “obj” refers to the name given to the object with the imputed data sets (the

result of using the command Amelia), and “file.stem” provides the name of the data

sets that will be written from the program.

Table 7.12 are the weighted regression estimates for the effect size model from

each imputation obtained in Amelia. The two variables missing observations are

average age of subjects and percent of male leaders. There is variation among the

five data sets in their estimates of the regression coefficients. This variation signals

that there is some uncertainty in the data set due to missing observations.

Table 7.13 provides the multiply-imputed estimates for the linear model of effect

size. These estimates were combined in Excel, and are fairly consistent with the

Table 7.12 Regression estimates from each imputation generated using Amelia

Variable Data set 1 Data set 2 Data set 3 Data set 4 Data set 5

Intercept 51.05a

(11.28)b*

68.56

(12.03)*

45.79

(11.061)*

41.854

(10.984)*

�5.974

(13.665)

Year �0.025

(0.006)*

�0.034

(0.006)*

�0.023

(0.006)*

�0.020

(0.005)*

0.003

(0.007)

Average age �0.033

(0.004)*

�0.019

(0.003)*

�0.022

(0.003)*

�0.037

(0.004)*

�0.019

(0.003)*

Percent of male

leaders

0.009

(0.001)*

0.006

(0.001)*

0.006

(0.001)*

0.007

(0.001)*

0.002

(0.001)*

First author

female

�0.284

(0.045)*

�0.127

(0.040)*

�0.060

(0.033)*

�0.338

(0.048)*

�0.154

(0.041)*

Size of

organization

�0.113

(0.039)*

�0.056

(0.037)

�0.140

(0.042)*

�0.237

(0.047)*

�0.001

(0.034)*

Random

selection used

0.049

(0.019)*

0.101

(0.023)*

0.059

(0.019)*

0.075

(0.020)*

0.068

(0.021)*
aCoefficient estimate
bStandard error of coefficient in parentheses
*Coefficient is significantly different from zero

Table 7.13 Multiply-imputed estimates from Amelia

Variable Coefficient SE Z p

Intercept 40.255 32.660 1.232 0.217

Year �0.0198 0.016 �1.207 0.210

Average age �0.026 0.010 �2.617 0.116

Percent of men 0.006 0.003 1.989 0.148

First author female �0.193 0.133 �1.451 0.192

Size of organization �0.110 0.106 �1.039 0.127

Random selection used 0.070 0.030 2.377 0.244
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earlier multiple imputation analysis using Schafer’s Norm program. None of the

coefficients are significantly different from zero.

SAS Proc MI

The SAS procedure PROC MI provides a number of options for analyzing data

with missing data. For the example illustrated in this chapter, we use the Monte

Carlo Markov Chain with a single chain for the multiple imputations. We also

use the EM estimates as the initial starting values for the MCMC analysis.

The commands below were used with the leadership data to produce the five

imputed data sets:

proc mi data ¼ work.leader out ¼ work.leaderimp seed ¼ 101897;

var year ageave perlead gen2 sizeorg2 rndm2 effsize;

mcmc;

The first line of the command gives the name of the data set to use, the name of

the created SAS data set with the imputations, and the seed number for the pseudo-

random number generator. The second command line provides the variables to use

in the imputations. Note that the effect size is included in this analysis. The third

line specifies the use of Markov Chain Monte Carlo to obtain the estimates of the

joint posterior distribution as described by Rubin (1987). Note that the number of

imputations are not specified; the default number of imputed data sets generated is

five, the number recommended by Schafer (1997).

SAS Proc MI provides a number of useful tables, including one outlining the

missing data patterns and the groupmeans for each variable within eachmissing data

pattern. Once the imputations are generated, the procedure gives the estimates for

the mean and standard error of the variables with missing data as illustrated below.

Multiple Imputation Parameter Estimates

Variable Mean SE 95% confidence limits DF

Average age

of sample

44.109 1.619 40.341 47.877 7.596

Percent of male

leaders

65.691 2.898 59.743 71.640 26.869

Variable Minimum Maximum Mu0
t for Mean

¼ Mu0 Pr > |t|

Average age

of sample

42.659 45.481 0 27.25 <.0001

Percent of male

leaders

64.586 67.390 0 22.67 <.0001

To obtain the weighted regression results for each imputation, we use Proc Reg

with weights. The command lines are shown below.
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proc reg data ¼ work.leaderimp outest ¼ work.regout covout;

model effsize ¼ year ageave perlead gen2 sizeorg2 rndm2;

weight wt;

by _Imputation_;

run;

The lines given above use the SAS data set generated by Proc MI, and estimate

the coefficients for the effect size model using weighted regression. The results are

computed for each imputation as indicated in the by statement. Table 7.14 provides

the weighted regression results for each imputation.

Table 7.15 gives the multiply-imputed estimates for the weighted regression

results. As in the prior analyses, none of the regression coefficients were signifi-

cantly different from zero.

Table 7.14 Multiple imputations generated using SAS Proc MI

Variable Data set 1 Data set 2 Data set 3 Data set 4 Data set 5

Intercept 29.36a

(14.38)b*

23.70

(11.49)*

�7.962

(14.16)

71.548

(12.560)*

14.935

(11.71)

Year �0.012

(0.006)*

�0.012

(0.006)*

0.004

(0.007)

�0.036

(0.006)*

�0.007

(0.006)

Average age �0.026

(0.004)*

�0.026

(0.004)*

�0.019

(0.004)*

�0.013

(0.003)*

�0.024

(0.003)*

Percent of male

leaders

0.009

(0.001)*

0.009

(0.001)*

0.004

(0.001)*

0.005

(0.001)*

0.004

(0.001)*

First author female �0.198

(0.042)*

�0.198

(0.042)*

�0.171

(0.042)*

�0.053

(0.037)

�0.202

(0.040)*

Size of organization �0.038

(0.034)

�0.038

(0.034)

�0.072

(0.034)*

�0.084

(0.034)*

0.072

(0.041)*

Random selection

used

0.006

(0.031)*

0.062

(0.031)*

0.066

(0.033)*

�0.021

(0.028)*

0.034

(0.029)
aCoefficient estimate
bStandard error of coefficient in parentheses
*Coefficient is significantly different from zero

Table 7.15 Multiply-imputed estimates generated by SAS

Variable Coefficient SE t p

Intercept 26.315 34.305 0.767 0.292

Year �0.013 0.017 �0.749 0.295

Average age �0.020 0.007 �2.744 0.111

Percent of men 0.005 0.003 1.706 0.169

First author female �0.143 0.084 �1.705 0.169

Size of organization �0.026 0.078 �0.336 0.397

Random selection used 0.030 0.050 0.591 0.330

Appendix 105



References

Allison, P.D. 2002. Missing data. Thousand Oaks: Sage.

Begg, C.B., and J.A. Berlin. 1988. Publication bias: A problem in interpreting medical data (with

discussion). Journal of the Royal Statistical Society Series A 151(2): 419–463.

Buck, S.F. 1960. A method of estimation of missing values in multivariate data suitable for use

with an electronic computer. Journal of the Royal Statistical Society Series B 22(2): 302–303.

Chan, A.-W., A. Hrobjartsson, M.T. Haahr, P.C. Gotzsche, and D.G. Altman. 2004. Empirical

evidence for selective reporting of outcomes in randomized trials. Journal of the American
Medical Association 291(20): 2457–2465.

Dempster, A.P., N.M. Laird, and D.B. Rubin. 1977. Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society Series B 39(1): 1–38.

Duval, S. 2005. The Trim and Fill method. In Publication bias in meta-analysis: Prevention,
assessment and adjustments, ed. H.R. Rothstein, A.J. Sutton, and M. Borenstein. West Sussex:

Wiley.

Duval, S., and R. Tweedie. 2000. Trim and fill: A simple funnel plot based method of testing and

adjusting for publication bias in meta-analysis. Biometrics 56(2): 455–463.
Eagly, A.H., M.C. Johannesen-Schmidt, and M.L. van Engen. 2003. Transformational, transac-

tional, and laissez-faire leadership styles: A meta-analysis comparing women and men.

Psychological Bulletin 129(4): 569–592.

Egger, M., G.D. Smith, M. Schneider, and C. Minder. 1997. Bias in meta-analysis detected by a

simple, graphical test. British Medical Journal 315(7109): 629–634.
Enders, C.K. 2010. Applied missing data analysis. Methodology in the Social Sciences. New York:

Guilford.

Fahrbach, K.R. 2001. An investigation of methods for mixed-model meta-analysis in the presence
of missing data. Lansing: Michigan State University.

Glasser, M. 1964. Linear regression analysis with missing observations among the independent

variables. Journal of the American Statistical Association 59(307): 834–844.

Hackshaw, A.K., M.R. Law, and N.J. Wald. 1997. The accumulated evidence on lung cancer and

environmentaly tobacco smoke. British Medical Journal 315(7114): 980–988.
Haitovsky, Y. 1968. Missing data in regression analysis. Journal of the royal Statistical Society

Series B 30(1): 67–82.

Hemminki, E. 1980. Study of information submitted by drug companies to licensing authorities.

British Medical Journal 280(6217): 833–836.
Honaker, J., G. King, and M. Blackwell (2011) Amelia II: A program for missing data. http://r.iq.

harvard.edu/src/contrib/

Kim, J.-O., and J. Curry. 1977. The treatment of missing data in multivariate analysis. Sociological
Methods and Research 6(2): 215–240.

Lipsey, M.W., and D.B. Wilson. 2001. Practical meta-analysis. Thousand Oaks: Sage

Publications.

Little, R.J.A., and D.B. Rubin. 1987. Statistical analysis with missing data. New York: Wiley.

Orwin, R.G., and D.S. Cordray. 1985. Effects of deficient reporting on meta-analysis: A concep-

tual framework and reanalysis. Psychological Bulletin 97(1): 134–147.

Rosenthal, R. 1979. The file drawer problem and tolerance for null results. Psychological Bulletin
86(3): 638–641.

Rothstein, H.R., A.J. Sutton, and M. Borenstein. 2005. Publication bias in meta-analysis: Preven-
tion, Assessment and Adjustments. West Sussex: Wiley.

Rubin, D.B. 1976. Inference and missing data. Biometrika 63(3): 581–592.

Rubin, D.B. 1987. Multiple imputation for nonresponse in surveys. Wiley, New York, NY

Schafer, J.L. 1997. Analysis of incomplete multivariate data. London: Chapman Hall.

Schafer, J.L. 1999. NORM: Multiple imputation of incomplete multivariate data under a normal
model. Software for Windows. University Park: Department of Statistics, Penn State

University.

106 7 Missing Data in Meta-analysis: Strategies and Approaches

http://r.iq.harvard.edu/src/contrib/
http://r.iq.harvard.edu/src/contrib/


Schafer, J.L., and J.W. Graham. 2002. Missing data: Our view of the state of the art. Psychological
Methods 7(2): 147–177.

Shadish, W.R., L. Robinson, and C. Lu. 1999. ES: A computer program and manual for effect size
calculation. St. Paul: Assessment Systems Corporation.

Sirin, S.R. 2005. Socioeconomic status and academic achievement: A meta-analytic review of

research. Review of Educational Research 75(3): 417–453. doi:10.3102/00346543075003417.

Smith, M.L. 1980. Publication bias and meta-analysis. Evaluation in Education 4: 22–24.

Sterne, J.A.C., B.J. Becker, and M. Egger. 2005. The funnel plot. In Publication bias in meta-
analysis: Prevention, assessment and adjustment, ed. H.R. Rothstein, A.J. Sutton, and M.

Borenstein. West Sussex: Wiley.

Vevea, J.L., and C.M. Woods. 2005. Publication bias in research synthesis: Sensitivity analysis

using a priori weight functions. Psychological Methods 10(4): 428–443.
Williamson, P.R., C. Gamble, D.G. Altman, and J.L. Hutton. 2005. Outcome selection biase in

meta-analysis. Statistical Methods in Medical Research 14(5): 515–524.

Wilson, D.B. 2010. Practical meta-analysis effect size calculator. Campbell Collaboration. http://

www.campbellcollaboration.org/resources/effect_size_input.php. Accessed 16 July 2011.

Yuan, Y.C. 2000. Multiple imputation for missing data: Concepts and new developments. http://

support.sas.com/rnd/app/papers/multipleimputation.pdf. Accessed 2 April 2011.

References 107

http://dx.doi.org/10.3102/00346543075003417
http://www.campbellcollaboration.org/resources/effect_size_input.php
http://www.campbellcollaboration.org/resources/effect_size_input.php
http://support.sas.com/rnd/app/papers/multipleimputation.pdf
http://support.sas.com/rnd/app/papers/multipleimputation.pdf

	001Download PDF (50.7 KB)front-matter
	Advances in Meta-Analysis
	Acknowledgements
	Contents


	002Download PDF (52.8 KB)fulltext
	Chapter 1: Introduction
	1.1 Background
	1.2 Planning a Systematic Review
	1.3 Analyzing Complex Data from a Meta-analysis
	1.4 Interpreting Results from a Meta-analysis
	1.5 What Do Readers Need to Know to Use This Book?
	References


	003Download PDF (63.2 KB)fulltext
	Chapter 2: Review of Effect Sizes
	2.1 Background
	2.2 Introduction to Notation and Basic Meta-analysis
	2.3 The Random Effects Mean and Variance
	2.4 Common Effect Sizes Used in Examples
	2.4.1 Standardized Mean Difference
	2.4.2 Correlation Coefficient
	2.4.3 Log Odds Ratio

	References


	004Download PDF (236.6 KB)fulltext
	Chapter 3: Planning a Meta-analysis in a Systematic Review�
	3.1 Background
	3.2 Deciding on Important Moderators of Effect Size
	3.3 Choosing Among Fixed, Random and Mixed Effects Models�
	3.4 Computing the Variance Component in Random and Mixed Models
	3.4.1 Example

	3.5 Confounding of Moderators in Effect Size Models
	3.5.1 Example

	3.6 Conducting a Meta-Regression
	3.6.1 Example

	3.7 Interpretation of Moderator Analyses
	Appendix
	Computing the Variance Component Using SAS
	Computing the Variance Component Using R
	Computing the Fixed Effects Meta-regression Using SPSS
	Computing the Fixed Effects Meta-regression Using SAS

	References


	005Download PDF (217.3 KB)fulltext
	Chapter 4: Power Analysis for the Mean Effect Size
	4.1 Background
	4.2 Fundamentals of Power Analysis
	4.3 Test of the Mean Effect Size in the Fixed Effects Model
	4.3.1 Z-Test for the Mean Effect Size in the Fixed Effects Model�
	4.3.2 The Power of the Test of the Mean Effect Size in Fixed Effects Models
	4.3.3 Deciding on Values for Parameters to Compute Power
	4.3.4 Example: Computing the Power of the Test of the Mean
	4.3.5 Example: Computing the Number of Studies Needed to Detect an Important Fixed Effects Mean
	4.3.6 Example: Computing the Detectable Fixed Effects Mean in a Meta-analysis

	4.4 Test of the Mean Effect Size in the Random Effects Model
	4.4.1 The Power of the Test of the Mean Effect Size in Random Effects Models
	4.4.2 Positing a Value for tau2 for Power Computations in the Random Effects Model
	4.4.3 Example: Estimating the Power of the Random Effects Mean
	4.4.4 Example: Computing the Number of Studies Needed to Detect an Important Random Effect Mean
	4.4.5 Example: Computing the Detectable Random Effects Mean in a Meta-analysis

	Appendix
	Computing Power for Examples in Section4.3
	Excel
	SPSS
	SAS
	R


	References


	006Download PDF (263.6 KB)fulltext
	Chapter 5: Power for the Test of Homogeneity in Fixed and Random Effects Models
	5.1 Background
	5.2 The Test of Homogeneity of Effect Sizes in a Fixed Effects Model
	5.2.1 The Power of the Test of Homogeneity in a Fixed Effects Model
	5.2.2 Choosing Values for the Parameters Needed to Compute Power of the Homogeneity Test in Fixed Effects Models
	5.2.3 Example: Estimating the Power of the Test of Homogeneity in Fixed Effects Models

	5.3 The Test of the Significance of the Variance Component in Random Effects Models
	5.3.1 Power of the Test of the Significance of the Variance Component in Random Effects Models
	5.3.2 Choosing Values for the Parameters Needed to Compute the Variance Component in Random Effects Models
	5.3.3 Example: Computing Power for Values of tau2, the Variance Component

	Appendix
	Computing Power for the Tests of Homogeneity and the Variance Component
	SPSS
	SAS
	R


	References


	007Download PDF (103.9 KB)fulltext
	Chapter 6: Power Analysis for Categorical Moderator Models of Effect Size
	6.1 Background
	6.2 Categorical Models of Effect Size: Fixed Effects One-Way ANOVA Models
	6.2.1 Tests in a Fixed Effects One-Way ANOVA Model
	6.2.2 Power of the Test of Between-Group Homogeneity, QB, in Fixed Effects Models
	6.2.3 Choosing Parameters for the Power of QB in Fixed Effects Models
	6.2.4 Example: Power of the Test of Between-Group Homogeneity in Fixed Effects Models
	6.2.5 Power of the Test of Within-Group Homogeneity, QW, in Fixed Effects Models
	6.2.6 Choosing Parameters for the Test of QW in Fixed Effects Models
	6.2.7 Example: Power of the Test of Within-Group Homogeneity in Fixed Effects Models

	6.3 Categorical Models of Effect Size: Random Effects One-Way ANOVA Models
	6.3.1 Power of Test of Between-Group Homogeneity in the Random Effects Model
	6.3.2 Choosing Parameters for the Test of Between-Group Homogeneity in Random Effects Models
	6.3.3 Example: Power of the Test of Between-Group Homogeneity in Random Effects Models

	6.4 Linear Models of Effect Size (Meta-regression)
	References


	008Download PDF (253.6 KB)fulltext
	Chapter 7: Missing Data in Meta-analysis: Strategies and Approaches
	7.1 Background
	7.2 Missing Studies in a Meta-analysis
	7.2.1 Identification of Publication Bias
	7.2.1.1 Example of Funnel Plot

	7.2.2 Assessing the Sensitivity of Results to Publication Bias

	7.3 Missing Effect Sizes in a Meta-analysis
	7.4 Missing Moderators in Effect Size Models
	7.5 Theoretical Basis for Missing Data Methods
	7.5.1 Multivariate Normality in Meta-analysis
	7.5.2 Missing Data Mechanisms or Reasons for Missing Data

	7.6 Commonly Used Methods for Missing Data in Meta-analysis�
	7.6.1 Complete-Case Analysis
	7.6.1.1 Example: Complete-Case Analysis

	7.6.2 Available Case Analysis or Pairwise Deletion
	7.6.2.1 Example: Available Case Analysis

	7.6.3 Single Value Imputation with the Complete Case Mean
	7.6.3.1 Example: Mean Imputation

	7.6.4 Single Value Imputation Using Regression Techniques
	7.6.4.1 Example: Regression Imputation


	7.7 Model-Based Methods for Missing Data in Meta-analysis
	7.7.1 Maximum-Likelihood Methods for Missing Data Using the EM Algorithm
	7.7.1.1 Example Using the EM Algorithm

	7.7.2 Multiple Imputation for Multivariate Normal Data
	7.7.2.1 Generating Multiple Imputations
	7.7.2.2 Analyzing the Completed Data Sets
	7.7.2.3 Combining the Estimates


	Appendix
	Computing Packages for Computation of the Multiple Imputation Results
	R Programs
	SAS Proc MI


	References


	009Download PDF (165.6 KB)fulltext
	Chapter 8: Including Individual Participant Data in Meta-analysis
	8.1 Background
	8.2 The Potential for IPD Meta-analysis
	8.3 The Two-Stage Method for a Mix of IPD and AD
	8.3.1 Simple Random Effects Models with Aggregated Data
	8.3.2 Two-Stage Estimation with Both Individual Level and Aggregated Data
	8.3.2.1 Example: Two-Stage Method Using Correlation as the Effect Size


	8.4 The One-Stage Method for a Mix of IPD and AD
	8.4.1 IPD Model for the Standardized Mean Difference
	8.4.2 IPD Model for the Correlation
	8.4.3 Model for the One-Stage Method with Both IPD and AD
	8.4.3.1 Example: One-Stage Method with Correlations


	8.5 Effect Size Models with Moderators Using a Mix of IPD and AD
	8.5.1 Two-Stage Methods for Meta-regression with a Mix of IPD and AD
	8.5.1.1 Example: Two-Stage Model with a Mix of IPD and AD

	8.5.2 One-Stage Method for Meta-regression with a Mix of IPD and AD
	8.5.3 Meta-regression for IPD Data Only
	8.5.4 One-Stage Meta-regression with a Mix of IPD and AD
	8.5.4.1 Example: One-Stage Method for Meta-regression with Correlations�


	Appendix: SAS Code for Meta-analyses Using a Mix of IPD and AD
	SAS Code for Simple Random Effects Model Using the Two-Step Method
	Output from Two-Stage Simple Random Effects Model

	SAS Code for Meta-regression Using the Two-Stage Method
	Output from Meta-regression Using the Two-Stage Method

	SAS Code for Simple Random Effects Model Using the One-Stage Model
	Output from One-Stage Simple Random Effects Model

	SAS Code for a Meta-regression Model Using the One-Step Method
	Output for Meta-regression Using the One-Step Method


	References


	010Download PDF (76.9 KB)fulltext
	Chapter 9: Generalizations from Meta-analysis
	9.1 Background
	9.1.1 The Preventive Health Services (2009) Report on Breast Cancer Screening
	9.1.2 The National Reading Panel´s Meta-analysis on Learning to Read

	9.2 Principles of Generalized Causal Inference
	9.2.1 Surface Similarity
	9.2.2 Ruling Out Irrelevancies
	9.2.3 Making Discriminations
	9.2.4 Interpolation and Extrapolation
	9.2.5 Causal Explanation

	9.3 Suggestions for Generalizing from a Meta-analysis
	References


	011Download PDF (38.7 KB)fulltext
	Chapter 10: Recommendations for Producing a High Quality Meta-analysis
	10.1 Background
	10.2 Understanding the Research Problem
	10.3 Having an a Priori Plan for the Meta-analysis
	10.4 Carefully and Thoroughly Interpret the Results of Meta-analysis
	References


	012Download PDF (44.5 KB)fulltext
	Chapter 11: Data Appendix
	11.1 Sirin (2005) Meta-analysis on the Association Between Measures of Socioeconomic Status and Academic Achievement
	11.2 Hackshaw et al. (1997) Meta-analysis on Exposure to Passive Smoking and Lung Cancer
	11.3 Eagly et al. (2003) Meta-analysis on Gender Differences in Transformational Leadership
	References


	013Download PDF (29.1 KB)back-matter
	Index

	001Download PDF (50.7 KB)front-matter
	Advances in Meta-Analysis
	Acknowledgements
	Contents


	002Download PDF (52.8 KB)fulltext
	003Download PDF (63.2 KB)fulltext
	004Download PDF (236.6 KB)fulltext
	005Download PDF (217.3 KB)fulltext
	006Download PDF (263.6 KB)fulltext
	007Download PDF (103.9 KB)fulltext
	008Download PDF (253.6 KB)fulltext
	009Download PDF (165.6 KB)fulltext
	010Download PDF (76.9 KB)fulltext
	011Download PDF (38.7 KB)fulltext
	012Download PDF (44.5 KB)fulltext
	013Download PDF (29.1 KB)back-matter

